test_reshape_op.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

Y
ying 已提交
20
from op_test import OpTest
21
import paddle.fluid as fluid
22
from paddle.fluid import compiler, Program, program_guard
Y
Yibing Liu 已提交
23

C
caoying03 已提交
24

25
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
26 27
class TestReshapeOp(OpTest):
    def setUp(self):
28 29 30 31 32 33 34 35
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
36

37 38 39 40
    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)
41 42

    def test_check_output(self):
43

44
        self.check_output(no_check_set=['XShape'])
45 46 47 48 49

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


50 51 52 53 54
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
55 56


57 58 59 60 61
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
C
caoying03 已提交
62

C
caoying03 已提交
63

64
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
65 66
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
67
        self.init_data()
68
        self.op_type = "reshape2"
69

70
        self.inputs = {
71
            "X": np.random.random(self.ori_shape).astype("float32"),
72
            "Shape": np.array(
73
                self.actual_shape, dtype="int32")
74
        }
75
        self.attrs = {"shape": self.new_shape}
76
        self.outputs = {
77 78
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
79
        }
80

81 82 83 84 85
    def init_data(self):
        self.ori_shape = (6, 5)
        self.new_shape = (0, -1, 5)
        self.actual_shape = (2, 3, 5)

86
    def test_check_output(self):
87
        self.check_output(no_check_set=['XShape'])
88

G
guosheng 已提交
89
    def test_check_grad(self):
C
chengduo 已提交
90
        self.check_grad(["X"], "Out")
91 92


93 94
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
95 96 97 98 99 100 101 102 103 104 105 106 107
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
        self.shape = (2, 0, 3, -1)


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            "Shape": np.array(
                self.new_shape, dtype="int32")
        }
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
        self.ori_shape = (2, 25)
        self.new_shape = (5, 10)
        self.infered_shape = (5, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


172
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
173 174 175 176
    def init_data(self):
        self.ori_shape = (5, 10)
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
177
        self.shape = (5, -1, -1)
178 179


180
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
181 182 183 184
    def init_data(self):
        self.ori_shape = (2, 2, 6)
        self.new_shape = (2, 0, 3, -1)
        self.infered_shape = (2, 2, 3, -1)
185 186 187 188
        self.shape = (2, 0, 3, -1)


# Test python API
189
class TestReshapeAPI(unittest.TestCase):
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    # situation 1: have shape( list, no tensor), no actual shape(Tensor)
    def test_1(self):
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        positive_five = fluid.layers.fill_constant([1], "int32", 5)
        x = fluid.layers.data(
            name="x", shape=[2, 25], append_batch_size=False, dtype="float32")

        actual_shape = fluid.layers.data(
            name="shape",
            shape=[1, 3],
            append_batch_size=False,
            dtype="float32")

        # situation 1: have shape( list, no tensor), no actual shape(Tensor)
        out_1 = fluid.layers.reshape(x, shape)
206

207 208
        # situation 2: have shape(list, no tensor), have actual shape(Tensor)
        out_2 = fluid.layers.reshape(x, shape=shape, actual_shape=actual_shape)
209

210 211
        # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
        out_3 = fluid.layers.reshape(x, shape=[positive_five, 10])
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226
        # Situation 4: have shape(Tensor), no actual shape(Tensor)
        out_4 = fluid.layers.reshape(x, shape=actual_shape)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4 = exe.run(
            fluid.default_main_program(),
            feed={"x": input,
                  "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
227 228


229
# Test Input Error
230
class TestReshapeOpError(unittest.TestCase):
231 232 233 234 235 236 237 238 239 240
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
                x1 = fluid.create_lod_tensor(
                    np.array([[-1]]), [[1]], fluid.CPUPlace())
                fluid.layers.reshape(x1, shape=[1])

            self.assertRaises(TypeError, test_x_type)

241
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
242 243 244 245 246
            def test_x_dtype():
                x2 = fluid.layers.data(
                    name="x2",
                    shape=[2, 25],
                    append_batch_size=False,
247
                    dtype="bool")
248 249 250 251
                fluid.layers.reshape(x2, shape=[2, 5, 5])

            self.assertRaises(TypeError, test_x_dtype)

252 253 254 255 256 257 258 259 260 261
            def test_x_dtype_float16():
                x_float16 = fluid.layers.data(
                    name="x_float16",
                    shape=[2, 25],
                    append_batch_size=False,
                    dtype="float16")
                fluid.layers.reshape(x_float16, shape=[2, 5, 5])

            test_x_dtype_float16()

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            x3 = fluid.layers.data(
                name="x3",
                shape=[2, 25],
                append_batch_size=False,
                dtype="float32")

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
                fluid.layers.reshape(x3, shape=1)

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
                fluid.layers.reshape(x3, shape=[25, 2], actual_shape=1)

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
                fluid.layers.reshape(x3, shape=[-1, -1, 5])

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
                fluid.layers.reshape(x3, [2, 5, 5, 0])

            self.assertRaises(AssertionError, test_shape_2)

            # The argument shape have more than one negtive value.
            def test_shape_3():
                fluid.layers.reshape(x3, [-1, -2, 5])

            self.assertRaises(AssertionError, test_shape_3)


Y
ying 已提交
299
if __name__ == "__main__":
Y
Yibing Liu 已提交
300
    unittest.main()