distribute_fpn_proposals_op.cu 8.2 KB
Newer Older
J
jerrywgz 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/fluid/memory/allocation/allocator.h>
#include "cub/cub.cuh"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

int const BBoxSize = 4;

struct RangeInitFunctor {
  int start_;
  int delta_;
  int* out_;
  __device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
};

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

J
jerrywgz 已提交
50 51
static inline void TransLoD(const int* length_lod, const int lod_size,
                            int* offset_lod) {
J
jerrywgz 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  int offset = 0;
  for (int i = 0; i < lod_size; ++i) {
    offset_lod[i] = offset;
    offset += length_lod[i];
  }
}

template <typename T>
static __device__ inline T RoIArea(const T* box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
J
jerrywgz 已提交
78
static __global__ void GPUDistFpnProposalsHelper(
J
jerrywgz 已提交
79 80 81 82 83 84 85
    const int nthreads, const T* rois, const int lod_size,
    const int refer_level, const int refer_scale, const int max_level,
    const int min_level, int* roi_batch_id_data, int* sub_lod_list,
    int* target_lvls) {
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    const T* offset_roi = rois + i * BBoxSize;
    int roi_batch_ind = roi_batch_id_data[i];
J
jerrywgz 已提交
86
    // get the target level of current rois
J
jerrywgz 已提交
87 88 89 90 91
    T roi_area = RoIArea(offset_roi, false);
    T roi_scale = sqrt(roi_area);
    int tgt_lvl = floor(log2(roi_scale / refer_scale) + refer_level);
    tgt_lvl = min(max_level, max(tgt_lvl, min_level));
    target_lvls[i] = tgt_lvl;
J
jerrywgz 已提交
92
    // compute number of rois in the same batch and same target level
J
jerrywgz 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    platform::CudaAtomicAdd(sub_lod_list + tgt_lvl * lod_size + roi_batch_ind,
                            1);
  }
}

template <typename DeviceContext, typename T>
class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* fpn_rois = ctx.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois = ctx.MultiOutput<LoDTensor>("MultiFpnRois");
    auto* restore_index = ctx.Output<Tensor>("RestoreIndex");

    const int min_level = ctx.Attr<int>("min_level");
    const int max_level = ctx.Attr<int>("max_level");
    const int refer_level = ctx.Attr<int>("refer_level");
    const int refer_scale = ctx.Attr<int>("refer_scale");
    int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
    PADDLE_ENFORCE_EQ(fpn_rois->lod().size(), 1UL,
                      "DistributeFpnProposalsOp need 1 level of LoD");

    auto fpn_rois_lod = fpn_rois->lod().back();
    int lod_size = fpn_rois_lod.size() - 1;
    int roi_num = fpn_rois_lod[lod_size];

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

J
jerrywgz 已提交
123
    // get batch id by lod in CPU
J
jerrywgz 已提交
124 125 126 127 128 129 130 131 132
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    for (int n = 0; n < lod_size; ++n) {
      for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
J
jerrywgz 已提交
133
    // copy batch id list to GPU
J
jerrywgz 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(),
                              &roi_batch_id_list_gpu);

    Tensor sub_lod_list;
    sub_lod_list.Resize({num_level, lod_size});
    int* sub_lod_list_data = sub_lod_list.mutable_data<int>(dev_ctx.GetPlace());
    Tensor target_lvls;
    target_lvls.Resize({roi_num});
    int* target_lvls_data = target_lvls.mutable_data<int>(dev_ctx.GetPlace());

    int blocks = NumBlocks(roi_num);
    int threads = kNumCUDAThreads;
J
jerrywgz 已提交
147 148 149

    // get target levels and sub_lod list
    GPUDistFpnProposalsHelper<T><<<blocks, threads>>>(
J
jerrywgz 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        roi_num, fpn_rois->data<T>(), lod_size, refer_level, refer_scale,
        max_level, min_level, roi_batch_id_list_gpu.data<int>(),
        sub_lod_list_data, target_lvls_data);

    Tensor index_in_t;
    int* idx_in = index_in_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, roi_num);
    for_range(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    int* keys_out = keys_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out = index_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
    cub::DeviceRadixSort::SortPairsDescending<int, int>(
        nullptr, temp_storage_bytes, target_lvls_data, keys_out, idx_in,
        idx_out, roi_num);
    // Allocate temporary storage
    auto place = boost::get<platform::CUDAPlace>(dev_ctx.GetPlace());
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes,
                                        memory::Allocator::kScratchpad);

    // Run sorting operation
J
jerrywgz 已提交
175
    // sort target level to get corresponding index
J
jerrywgz 已提交
176 177 178 179 180 181
    cub::DeviceRadixSort::SortPairsDescending<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
        idx_in, idx_out, roi_num);

    int* restore_idx_data =
        restore_index->mutable_data<int>({roi_num, 1}, dev_ctx.GetPlace());
J
jerrywgz 已提交
182
    // sort current index to get restore index
J
jerrywgz 已提交
183 184 185 186 187 188 189 190 191 192
    cub::DeviceRadixSort::SortPairsDescending<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
        restore_idx_data, roi_num);

    Tensor offset_lod;
    int* offset_lod_data =
        offset_lod.mutable_data<int>({lod_size + 1}, dev_ctx.GetPlace());
    for (int i = 0; i < num_level; ++i) {
      Tensor sub_lod = sub_lod_list.Slice(i, i + 1);
      int* sub_lod_data = sub_lod.data<int>();
J
jerrywgz 已提交
193 194
      // transfer length-based lod to offset-based lod
      TransLoD(sub_lod_data, lod_size + 1, offset_lod_data);
J
jerrywgz 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      int sub_rois_num = offset_lod_data[lod_size];
      Tensor sub_idx = index_out_t.Slice(0, sub_rois_num);

      multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                         dev_ctx.GetPlace());

      GPUGather<T>(dev_ctx, *fpn_rois, sub_idx, multi_fpn_rois[i]);
      framework::LoD lod;
      std::vector<size_t> offset;
      memory::Copy(platform::CPUPlace(), offset.data(), place, offset_lod_data,
                   sizeof(int) * (lod_size + 1), 0);
      lod.emplace_back(offset);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    distribute_fpn_proposals,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           double>);