trainer.py 15.2 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
17

Y
Yu Yang 已提交
18
import core
19

Y
Yu Yang 已提交
20
import data_feeder
21 22
import executor
import framework
J
Jeff Wang 已提交
23
import io
Y
Yu Yang 已提交
24 25
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
26
import parallel_executor
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29
__all__ = [
30 31
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
32 33 34
]


Y
Yu Yang 已提交
35 36 37 38 39 40 41 42
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
43

Y
Yu Yang 已提交
44 45 46 47 48

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
49
        self.fetch_metrics = True
Y
Yu Yang 已提交
50 51 52


class EndStepEvent(object):
Y
yuyang18 已提交
53
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
54 55
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
56
        self.metrics = metrics
H
Helin Wang 已提交
57 58


59 60 61 62 63 64 65 66 67 68 69
class CheckpointConfig(object):
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
                 save_interval_secs=600):
        if checkpoint_dir is None:
            self.checkpoint_dir = os.getcwd()
        self.max_num_checkpoints = max_num_checkpoints
        self.save_interval_secs = save_interval_secs


Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
96
class Trainer(object):
Y
Yu Yang 已提交
97 98 99
    """

    Args:
Q
Qiao Longfei 已提交
100
        train_func(callable): A function which will return loss. The loss must be a scalar.
Y
Yu Yang 已提交
101 102 103 104
        optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
105 106 107
    def __init__(self,
                 train_func,
                 optimizer,
Y
yuyang18 已提交
108
                 place=None,
109 110
                 parallel=False,
                 checkpoint_config=None):
111
        self.__stop = False
Y
yuyang18 已提交
112
        self.parallel = parallel
H
Helin Wang 已提交
113
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
114
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
115
        # test_word2vec.py
Q
Qiao Longfei 已提交
116 117 118
        if not isinstance(optimizer, opt_module.Optimizer):
            raise TypeError("The optimizer should be an instance of Optimizer")

119 120 121 122 123 124 125 126 127 128
        # config for checkpoint
        # only chief worker will save variables
        self.chief = True
        self.checkpoint = checkpoint_config
        if self.checkpoint and not isinstance(self.checkpoint,
                                              CheckpointConfig):
            raise TypeError(
                "The checkpoint_config shoule be an instance of CheckpointConfig"
            )

H
Helin Wang 已提交
129
        self.scope = core.Scope()
Y
Yu Yang 已提交
130 131 132 133 134

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
135
            program_func_outs = train_func()
Y
yuyang18 已提交
136
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
137 138
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone()
Y
Yu Yang 已提交
139 140 141
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
F
fengjiayi 已提交
142
            # The fisrt element of program_func_outs is loss.
Y
yuyang18 已提交
143
            loss = self.train_func_outputs[0]
144
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
145

Q
Qiao Longfei 已提交
146
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
147

Q
Qiao Longfei 已提交
148
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
149

H
Helin Wang 已提交
150 151
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
152
        # Run startup program
153 154 155
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
156

157 158 159 160
        if self.checkpoint:
            exe = executor.Executor(place)
            io.load_checkpoint(exe, self.checkpoint.checkpoint_dir,
                               self.startup_program)
Y
Yu Yang 已提交
161

162 163 164 165 166 167
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
168
            self.chief = self.trainer_id == 0
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
192
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
193 194 195 196
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
217
        self.chief = self.trainer_id == 0
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if training_role == "PSERVER":
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
234

235 236 237 238 239 240
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
241
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
255 256 257 258 259 260
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
261 262 263 264 265 266
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
267

268
    def test(self, reader, feed_order):
F
fengjiayi 已提交
269 270 271 272 273 274 275 276 277
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
278 279
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
280

H
Helin Wang 已提交
281 282
    def save_params(self, param_path):
        # reference: save_persistables in io.py
283 284 285
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
286

287 288 289 290 291 292 293 294
    def _save_checkpoint(self):
        if self.checkpoint and self.chief:
            exe = executor.Executor(self.place)
            io.save_checkpoint(exe, self.checkpoint.checkpoint_dir,
                               self.checkpoint.max_num_checkpoints,
                               self.checkpoint.save_interval_secs,
                               self.train_program)

Y
Yu Yang 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
317
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
318 319
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
320
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
321 322 323 324 325 326 327
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
        for epoch_id in range(num_epochs):
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
328 329
                if self.__stop:
                    return
Y
yuyang18 已提交
330 331 332 333 334 335 336 337 338 339 340
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
341
                self._save_checkpoint()
Y
yuyang18 已提交
342
            event_handler(EndEpochEvent(epoch_id))
F
fengjiayi 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
361 362 363 364 365 366 367 368
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
369
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
370 371 372 373 374 375 376 377 378 379 380

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

F
fengjiayi 已提交
381 382 383 384 385

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

386
    if isinstance(feed_order, list):
F
fengjiayi 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list