Parameter.h 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stdint.h>

#include <iostream>
#include <string>
#include <vector>

#include "ParameterConfig.pb.h"
#include "TrainerConfig.pb.h"

Y
Yu Yang 已提交
26 27 28
#include "ParameterUpdaterHook.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
L
liaogang 已提交
29
#include "paddle/utils/Common.h"
Y
Yu Yang 已提交
30
#include "paddle/utils/GlobalConstants.h"
Z
zhangjinchao01 已提交
31
#include "paddle/utils/Locks.h"
Y
Yu Yang 已提交
32
#include "paddle/utils/ThreadLocal.h"
Z
zhangjinchao01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
#include "paddle/utils/Util.h"

namespace paddle {

class SparsePrefetchRowCpuMatrix;

class Parameter;
typedef std::function<void(Parameter* param)> UpdateCallback;
typedef std::function<void(int paramId, Parameter* param)> ParamInitCallback;

struct Segment {
  int64_t beginDim;
  int64_t endDim;

  // We allow the possibility that the parameters are not stored at contiguous
  // memory locations for speed reason (i.e. data alignemnt)
  // This means that the dimenstion is not same as the position in the memroy
  // buffer.
  int64_t beginPos;  // beginning position in the local value or grad buffer
};

class Parameter;
typedef std::shared_ptr<Parameter> ParameterPtr;

class Parameter {
public:
  Parameter(const ParameterConfig& config, bool useGpu, bool doInit = true);
  const std::string& getName() const { return config_.name(); }

  size_t getSize() const { return config_.size(); }

  bool isFullSize() const {
    return this->getSize() == bufs_[PARAMETER_VALUE]->getSize();
  }

  inline bool useGpu() const { return useGpu_; }

  int getDeviceId() const { return deviceId_; }

  void setDevice(int deviceId) { deviceId_ = deviceId; }

  /// The id ranges from 0 to the_total_number_of_parameters - 1
  size_t getID() const { return config_.para_id(); }

  /// ID is a implict value created until neural network is built.
  void setID(size_t id) { config_.set_para_id(id); }

  bool isStatic() const { return config_.is_static(); }

  enum MatType {
    MAT_NORMAL,
    /// both value and grad are shared
    MAT_NORMAL_SHARED,

    /// Now used in BatchNorm in CPU mode
    MAT_VALUE_SHARED,

    /// sparse matrix, which has full size parameter
    MAT_SPARSE_ROW_IDS,
    /// sparse matrix, parameter size scale by sparse rates.
    MAT_SPARSE_ROW_AUTO_GROW,
    MAT_CACHE_ROW,
    MAT_SPARSE_ROW,

    /// sparse matrix for prefetching parameter from pserver
    MAT_SPARSE_ROW_PREFETCH,
    /// same as above, but parameter has full size for saving parameter in local
    MAT_SPARSE_ROW_PREFETCH_FULL_SIZE,
  };

  void enableSparseParameter() {
    if (config_.is_sparse()) {
      if (config_.format() == "csr") {
        size_t height = config_.dims(0);
        size_t nnz = config_.size();
        enableIntType(PARAMETER_ROWS, height + 1);
        enableIntType(PARAMETER_COLS, nnz);
        format_ = SPARSE_CSR;
      } else {
        size_t width = config_.dims(1);
        size_t nnz = config_.size();
        enableIntType(PARAMETER_COLS, width + 1);
        enableIntType(PARAMETER_ROWS, nnz);
        format_ = SPARSE_CSC;
      }
    }
  }

  /// allocate buffer for the give type
  void enableType(ParameterType type, MatType matType = MAT_NORMAL) {
    if (bufs_[type] || mats_[type]) {
      return;
    }
    SetDevice device(deviceId_);
    if (config_.dims_size() == 2) {
      if (matType == MAT_NORMAL || matType == MAT_NORMAL_SHARED ||
          matType == MAT_SPARSE_ROW_PREFETCH_FULL_SIZE ||
130
          matType == MAT_VALUE_SHARED || matType == MAT_SPARSE_ROW_IDS) {
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        bufs_[type] = Vector::createParallelVector(config_.size(), useGpu_);
        bufs_[type]->zeroMem();
      } else {
        CHECK(isGradSparseUpdate());
      }
      if (config_.is_sparse() && type == PARAMETER_VALUE) {
        enableSparseParameter();
      }
      setMat(type, matType);
    } else {
      bufs_[type] = Vector::createParallelVector(config_.size(), useGpu_);
      bufs_[type]->zeroMem();
    }
  }

146 147 148 149 150 151
  void enableBufType(ParameterType type) {
    if (bufs_[type]) return;
    bufs_[type] = Vector::createParallelVector(config_.size(), useGpu_);
    bufs_[type]->zeroMem();
  }

Z
zhangjinchao01 已提交
152 153 154 155 156 157 158 159 160
  void enableIntType(ParameterType type, size_t intStoreSize = 0) {
    if (!intBufs_[type]) {
      SetDevice device(deviceId_);
      size_t size = intStoreSize ? intStoreSize : config_.size();
      intBufs_[type] = IVector::create(size, useGpu_);
      intBufs_[type]->zeroMem();
    }
  }

161 162
  void enableSharedType(ParameterType type,
                        VectorPtr vec,
Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                        MatrixPtr mat = nullptr) {
    if (!bufs_[type] && !mats_[type]) {
      bufs_[type] = vec;
      mats_[type] = mat;
    }
  }

  void enableSharedType(ParameterType type, VectorPtr vec, MatType matType) {
    if (!bufs_[type]) {
      bufs_[type] = vec;
      setMat(type, matType);
    }
  }

  /// for batchGradientMachine: blockNum is number of partitions of the matrix.
  bool isGradShared(size_t* blockNum = NULL);

  bool isValueShared();

  // for AsgdSparseGradientMachine & SgdSparseGradientMachine:
  // and MultiGradientMachine
  bool isGradSparseUpdate() const;

  bool isSparseRemoteUpdate() const {
    return config_.sparse_remote_update() && !useGpu();
  }

  const ParameterConfig& getConfig() const { return config_; }

  ParameterConfig& getConfig() { return config_; }

  bool hasType(ParameterType pType) const {
    return bufs_[pType] || mats_[pType];
  }

  const VectorPtr& getBuf(ParameterType pType) const {
    return this->bufs_[pType];
  }

  const VectorPtr* getBufs() const { return bufs_; }

  const MatrixPtr& getMat(ParameterType pType) const { return mats_[pType]; }

  const IVectorPtr& getIntBuf(ParameterType pType) { return intBufs_[pType]; }

  void setIntBuf(ParameterType pType, const IVectorPtr& iVec) {
    intBufs_[pType] = iVec;
  }

  SparsePrefetchRowCpuMatrix* getPrefetchMatrix();

  float getLearnRate() const { return config_.learning_rate(); }

  float getInitMean() const { return config_.initial_mean(); }

  float getInitStandardDeviation() const { return config_.initial_std(); }

  void setValueUpdated() { updated_ = true; }

  void clearValueUpdated() { updated_ = false; }

  bool isValueUpdated() const { return updated_; }

  /**
   * Update bufs_[PARAMETER_VALUE] using bufs_[PARAMETER_GRADIENT]
   */
  void updateWithGradient(real learningRate);

  /**
   * Update bufs_[PARAMETER_VALUE] using sparse row grad matrix.
   *
   * @see SparseRowCpuMatrix::sgdUpdate for more information.
   */
236 237 238 239 240
  void updateWithGradient(real learningRate,
                          MatrixPtr gradMat,
                          IVectorPtr t0,
                          int currentTime,
                          bool fini = false);
Z
zhangjinchao01 已提交
241 242 243 244

  /**
   * This function is used to calculate multiple gpus, but only as a candidate
   */
245 246
  void updateWithGradient(real learningRate,
                          VectorPtr grad,
Z
zhangjinchao01 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                          bool normalUpdate = true);

  /**
   * Save parameter value to a file
   */
  bool save(const std::string& filename) const;

  /**
   * Save parameter to ostream
   */
  bool save(std::ostream& s) const;

  /**
   * Load parameter value from a file
   */
  bool load(const std::string& filename);

  /**
   * Load parameter from istream
   */
  bool load(std::istream& is);

  std::vector<Segment>& getGradientSegments() { return gradSegments_; }

  void incShared() { sharedCount_++; }

  /**
   * After one of the parameter's gradient is merged
   * You should call this function to do some additional processing,
   */
  void incUpdate(const UpdateCallback& callbacks = NULL);

  void clearGradient() {
    auto& mat = getMat(PARAMETER_GRADIENT);
    if (mat) {
      // zeroMem will also clear rows for SparseRowCpuMatrix
      mat->zeroMem();
    } else {
      auto& gradBuf = getBuf(PARAMETER_GRADIENT);
      if (gradBuf) gradBuf->zeroMem();
    }
  }

  void initialize();

  /**
   * Initialize the value according to config_: initial_mean,
   * initial_std and initial_strategy.
   */
  void randomize();
  static void randomize(const VectorPtr& value, const ParameterConfig& config);

  /// Initialize the value to 0
  void zeroMem();

  static const int kFormatVersion = 0;
  /// file header structure
  struct Header {
    int32_t version;     // = 0, file format version
    uint32_t valueSize;  // = sizeof(real)
    uint64_t size;       // = getSize()
  };

  /**
   * @brief  Parameter Update Hook.
   *
   * The parameter's update hook before ParameterUpdater::updateImpl
   * It could modify gradient/momentum/etc here. Such as drop some gradient,
   * etc.
   */
  void updateHook() {
    for (auto& hook : updaterHooks_) {
      hook->update(this);
    }
  }

  /**
   * @brief  Initialize all updater hook.
   *
   * This method should be invoked in ParameterUpdater::init() only.
   */
  void initHook() {
    for (auto& hook : updaterHooks_) {
      hook->init(this);
    }
  }

protected:
  /**
   * @brief create matrix to matType.
   *
   * used by gradient machine which needs specify matrix type,
   * instead of creating in weights.cpp.
   *
   * @note  pType should be enabled already.
   */
  void setMat(ParameterType pType, int matType);

  bool isUpdatable() { return (updateCounter_ == sharedCount_); }

  void clearUpdate() { updateCounter_ = 0; }

protected:
  ParameterConfig config_;

  bool useGpu_;

  int deviceId_;

  /**
   * @brief bufs_ stores parameter value and gradient.
   *
   * Layer should use bufs_[PARAMETER_VALUE] to form weight matrix for
   * calculation and stores gradient to bufs_[PARAMETER_GRADIENT].
   */
  VectorPtr bufs_[NUM_PARAMETER_TYPES];

  /**
   * @brief Weight matrix for bufs_.
   *
   * It's helpfull when parameter shared by multi-layers.
   * Caller should check, if mats exist, do not create it again.
   */
  MatrixPtr mats_[NUM_PARAMETER_TYPES];

  /// Int vectors, used in some User defined parameter types
  IVectorPtr intBufs_[NUM_PARAMETER_TYPES];

  int sharedCount_;
  int updateCounter_;
  std::vector<Segment> gradSegments_;  // segments of non-zero gradient

  bool updated_;
  SparseFormat format_;

  static ThreadLocal<std::vector<VectorPtr>> tlsTempBufs_;

  std::vector<std::shared_ptr<IParameterUpdaterHook>> updaterHooks_;

public:
  void setSharedCount(int cnt) { sharedCount_ = cnt; }
  int getSharedCount() { return sharedCount_; }

  void singleUpdate(void* data);
  bool isSparse() { return config_.is_sparse(); }
  SparseFormat getFormat() { return format_; }

  static const std::string kMissParameterFail;
  static const std::string kMissParameterRand;
  static const std::string kMissParameterZero;

  static VectorPtr* getTlsTempBufs();

  /**
   * exec a func in single/multi thread.
   * vecs is bufs_ of Parameter, as input of ExecFunc.
   */
  typedef std::function<void(const VectorPtr vecs[])> ExecFunc;
  void exec(ExecFunc func);
};

typedef std::map<std::string, ParameterPtr> ParameterMap;

}  // namespace paddle