elementwise_grad_kernel.cu 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
16

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
21 22 23
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
24
#include "paddle/phi/kernels/gpu/elementwise_grad.h"
25
#include "paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h"
26

27
namespace phi {
28 29 30 31 32 33 34 35 36 37 38

template <typename T>
void AddGradFunc(const GPUContext& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const DenseTensor& out,
                 const DenseTensor& dout,
                 DenseTensor* dx,
                 DenseTensor* dy,
                 int axis = -1) {
  if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
39
    ElementwiseAddGrad<T>(dev_ctx, x, y, out, dout, dx, dy);
40
  } else {
41
    DefaultElementwiseAddGrad<T>(dev_ctx, x, y, out, dout, dx, dy, axis);
42 43 44 45 46 47 48 49 50 51 52
  }
}

template <typename T, typename Context>
void AddGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const DenseTensor& dout,
                   int axis,
                   DenseTensor* dx,
                   DenseTensor* dy) {
53
  phi::AddGradImpl<T>(dev_ctx, x, y, dout, axis, dx, dy, AddGradFunc<T>);
54 55 56 57 58 59 60 61 62 63
}

template <typename T, typename Context>
void AddDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& y,
                         paddle::optional<const DenseTensor&> ddx,
                         paddle::optional<const DenseTensor&> ddy,
                         const DenseTensor& dout,
                         int axis,
                         DenseTensor* ddout) {
64
  phi::AddDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
65 66 67 68 69 70 71 72 73 74
}

template <typename T, typename Context>
void AddTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& d_ddout,
                         int axis,
                         DenseTensor* d_ddx,
                         DenseTensor* d_ddy) {
75
  phi::AddGradImpl<T>(
76 77 78
      dev_ctx, ddx, ddy, d_ddout, axis, d_ddx, d_ddy, AddGradFunc<T>);
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
template <typename T, typename Context>
void SubtractGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  // skip out
  auto* out = &dout;
  if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
    elementwise_sub_grad<T>(dev_ctx, x, y, *out, dout, dx, dy);
  } else {
    default_elementwise_sub_grad<T>(dev_ctx, x, y, *out, dout, dx, dy, axis);
  }
}

template <typename T, typename Context>
void SubtractDoubleGradKernel(const Context& dev_ctx,
                              const DenseTensor& y,
                              paddle::optional<const DenseTensor&> ddx,
                              paddle::optional<const DenseTensor&> ddy,
                              const DenseTensor& dout,
                              int axis,
                              DenseTensor* ddout) {
104
  phi::SubtractDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
105 106
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T, typename Context>
void DivideGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      const DenseTensor& out,
                      const DenseTensor& dout,
                      int axis,
                      DenseTensor* dx,
                      DenseTensor* dy) {
  const auto place = dev_ctx.GetPlace();
  if (dx != nullptr && dy != nullptr) {
    std::vector<const DenseTensor*> ins = {&dout, &out, &y};
    GetGradXAndYOut<ElementwiseType::kTernary, T>(
        dev_ctx,
        place,
        axis,
        ins,
        dout,
        dx,
        dy,
        funcs::DivGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const DenseTensor*> ins = {&dout, &y};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(
        dev_ctx, place, axis, ins, dout, dx, funcs::DivGradXFunctor<T>());
  } else if (dy != nullptr && dx == nullptr) {
    std::vector<const DenseTensor*> ins = {&dout, &out, &y};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dy, funcs::DivGradYFunctor<T>());
  }
}

Y
YuanRisheng 已提交
139 140 141 142 143 144 145 146 147 148 149 150
template <typename T, typename Context>
void MultiplyGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  ElementwiseMulGrad<T>(dev_ctx, x, y, dout, dx, dy, axis);
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
template <typename T, typename Context>
void MaximumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       int axis,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  const auto place = dev_ctx.GetPlace();
  if (dx != nullptr && dy != nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
    GetGradXAndYOut<ElementwiseType::kTernary, T>(
        dev_ctx,
        place,
        axis,
        ins,
        dout,
        dx,
        dy,
        funcs::MaxGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(
        dev_ctx, place, axis, ins, dout, dx, funcs::MaxGradXFunctor<T>());
  } else if (dy != nullptr && dx == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dy, funcs::MaxGradYFunctor<T>());
  }
}

template <typename T, typename Context>
void MinimumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       int axis,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  const auto place = dev_ctx.GetPlace();
  if (dx != nullptr && dy != nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
    GetGradXAndYOut<ElementwiseType::kTernary, T>(
        dev_ctx,
        place,
        axis,
        ins,
        dout,
        dx,
        dy,
        funcs::MinGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(
        dev_ctx, place, axis, ins, dout, dx, funcs::MinGradXFunctor<T>());
  } else if (dy != nullptr && dx == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dy, funcs::MinGradYFunctor<T>());
  }
}
212
}  // namespace phi
213

214
PD_REGISTER_KERNEL(add_grad,
215 216
                   GPU,
                   ALL_LAYOUT,
217
                   phi::AddGradKernel,
218 219 220 221
                   float,
                   double,
                   int,
                   int64_t,
222
                   phi::dtype::float16,
223
                   phi::dtype::bfloat16,
224 225
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
226

227
PD_REGISTER_KERNEL(add_double_grad,
228 229
                   GPU,
                   ALL_LAYOUT,
230
                   phi::AddDoubleGradKernel,
231 232 233 234
                   float,
                   double,
                   int,
                   int64_t,
235
                   phi::dtype::float16,
236
                   phi::dtype::bfloat16,
237 238
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
239

240
PD_REGISTER_KERNEL(add_triple_grad,
241 242
                   GPU,
                   ALL_LAYOUT,
243
                   phi::AddTripleGradKernel,
244 245 246 247
                   float,
                   double,
                   int,
                   int64_t,
248
                   phi::dtype::float16,
249
                   phi::dtype::bfloat16,
250 251
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
252

253
PD_REGISTER_KERNEL(subtract_grad,
254 255
                   GPU,
                   ALL_LAYOUT,
256
                   phi::SubtractGradKernel,
257 258 259 260
                   float,
                   double,
                   int,
                   int64_t,
261
                   phi::dtype::float16,
262
                   phi::dtype::bfloat16,
263 264
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
265

266
PD_REGISTER_KERNEL(subtract_double_grad,
267 268
                   GPU,
                   ALL_LAYOUT,
269
                   phi::SubtractDoubleGradKernel,
270 271 272 273
                   float,
                   double,
                   int,
                   int64_t,
274
                   phi::dtype::float16,
275
                   phi::dtype::bfloat16,
276 277
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

PD_REGISTER_KERNEL(divide_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::DivideGradKernel,
                   float,
                   phi::dtype::float16,
                   phi::dtype::bfloat16,
                   double,
                   int,
                   int64_t,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(divide_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::DivideDoubleGradKernel,
                   float,
                   phi::dtype::float16,
                   phi::dtype::bfloat16,
                   double,
                   int,
                   int64_t,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
Y
YuanRisheng 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

PD_REGISTER_KERNEL(multiply_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MultiplyGradKernel,
                   float,
                   phi::dtype::float16,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MultiplyDoubleGradKernel,
                   float,
                   phi::dtype::float16,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_triple_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MultiplyTripleGradKernel,
                   float,
                   phi::dtype::float16,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
Y
YuanRisheng 已提交
346
PD_REGISTER_KERNEL(fmax_grad,
347 348 349 350 351 352 353 354
                   GPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMaxGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

Y
YuanRisheng 已提交
355
PD_REGISTER_KERNEL(fmin_grad,
356 357 358 359 360 361 362
                   GPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMinGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

PD_REGISTER_KERNEL(maximum_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MaximumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(minimum_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MinimumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}