smooth_l1_loss_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
Y
yangyaming 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

Y
yangyaming 已提交
19 20 21 22 23 24 25
namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
29 30 31

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
X
xuezhong 已提交
32 33 34 35 36 37 38 39
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims);
    }
Q
Qiao Longfei 已提交
40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
41
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
42 43 44 45
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
X
xuezhong 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      auto dims = ctx->GetInputDim("InsideWeight");
      bool check = true;
      if ((!ctx->IsRuntime()) &&
          (framework::product(dims) <= 0 || framework::product(x_dims) <= 0)) {
        check = false;
      }
      if (check) {
        PADDLE_ENFORCE_EQ(dims, x_dims);
      }

      dims = ctx->GetInputDim("OutsideWeight");
      check = true;
      if ((!ctx->IsRuntime()) &&
          (framework::product(dims) <= 0 || framework::product(x_dims) <= 0)) {
        check = false;
      }
      if (check) {
        PADDLE_ENFORCE_EQ(dims, x_dims);
      }
Y
yangyaming 已提交
65 66
    }

Q
Qiao Longfei 已提交
67
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
68
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
69
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
70 71 72 73 74
  }
};

class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
75
  void Make() override {
Y
yangyaming 已提交
76
    AddInput("X",
Y
yangyaming 已提交
77 78 79
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
80
    AddInput("Y",
Y
yangyaming 已提交
81 82
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
83
    AddInput("InsideWeight",
Y
yangyaming 已提交
84 85 86
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
87 88
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
89
    AddInput("OutsideWeight",
Y
yangyaming 已提交
90 91 92 93
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
94
        .AsDispensable();
Y
yangyaming 已提交
95
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
96
        .AsIntermediate();
Y
yangyaming 已提交
97 98 99
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
100 101 102 103
    AddAttr<float>("sigma",
                   "Hyper parameter of smooth l1 loss op."
                   "A float scalar with default value 3.0.")
        .SetDefault(1.0);
Y
yangyaming 已提交
104
    AddComment(R"DOC(
105 106
Smooth L1 Loss Operator.

Y
yangyaming 已提交
107 108
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
109
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
110
and then sums all the losses. So the shape of Out is [batch_size, 1].
111

Y
yangyaming 已提交
112
The equation is:
Y
yangyaming 已提交
113 114 115 116 117 118 119 120 121 122 123
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
124

Y
yangyaming 已提交
125 126 127 128 129 130 131 132
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

133
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qingqing01 已提交
134
    auto in_dims = ctx->GetInputDim("Diff");
Q
Qiao Longfei 已提交
135
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
136

137
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
138
                      "The tensor rank of Input(Out@Grad) should be 2.");
X
xuezhong 已提交
139 140 141 142 143
    PADDLE_INFERSHAPE_ENFORCE_EQ(ctx, out_dims[0], in_dims[0],
                                 "The 1st dimension of Input(Out@Grad) must be "
                                 "same as input.");
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, out_dims[1], 1, "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
144

Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
153 154 155
  }
};

Q
qingqing01 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("smooth_l1_loss_grad");
    op->SetInput("InsideWeight", Input("InsideWeight"));
    op->SetInput("OutsideWeight", Input("OutsideWeight"));
    op->SetInput("Diff", Output("Diff"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Y
yangyaming 已提交
177 178 179 180
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
181
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
Q
qingqing01 已提交
182
                  ops::SmoothL1LossGradMaker);
183
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
184
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
185 186
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
187 188
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
189
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);