parameter_recv.cc 7.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Q
Qiao Longfei 已提交
15
#include <memory>
Q
Qiao Longfei 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_recv.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
31
#include "paddle/fluid/operators/strided_memcpy.h"
Q
Qiao Longfei 已提交
32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

template <typename T>
43
void ParameterRecv<T>::operator()(const RpcContext &rpc_ctx,
Q
Qiao Longfei 已提交
44
                                  const framework::Scope &scope) {
45
  VLOG(2) << "ParameterRecv in " << rpc_ctx.var_name;
46
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
47 48 49 50 51

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
52
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
53

54
  auto *recv_var = scope.FindVar(rpc_ctx.var_name);
Q
Qiao Longfei 已提交
55 56

  // recv all vars to local scope
57 58
  if (recv_var->IsType<framework::LoDTensor>() ||
      recv_var->IsType<framework::SelectedRows>()) {
Q
Qiao Longfei 已提交
59
    std::vector<distributed::VarHandlePtr> rets;
60 61
    for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) {
      auto &recv_var_name = rpc_ctx.splited_var_names[i];
Q
Qiao Longfei 已提交
62
      local_scope->Var(recv_var_name);
63 64 65 66 67 68 69 70 71 72 73 74
      VLOG(4) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i];
      if (recv_var->IsType<framework::LoDTensor>()) {
        // sparse param in recv_scope is LoDTensor
        rets.push_back(rpc_client->AsyncGetVar(rpc_ctx.epmap[i], cpu_ctx,
                                               *local_scope.get(),
                                               recv_var_name, recv_var_name));
      } else {
        // sparse param in pserver_scope is SelectedRows
        rets.push_back(rpc_client->AsyncGetVar(
            rpc_ctx.epmap[i], cpu_ctx, *local_scope.get(), recv_var_name,
            recv_var_name, recv_var_name));
      }
Q
Qiao Longfei 已提交
75
    }
Q
Qiao Longfei 已提交
76 77
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
Q
Qiao Longfei 已提交
78 79
    }
  } else {
Q
Qiao Longfei 已提交
80
    PADDLE_THROW("unsupported var type to recv!");
Q
Qiao Longfei 已提交
81 82
  }

Q
Qiao Longfei 已提交
83
  // concat recved tensor into one var
84
  if (recv_var->IsType<framework::LoDTensor>()) {
Q
Qiao Longfei 已提交
85
    size_t output_offset = 0;
Q
Qiao Longfei 已提交
86
    size_t row_offset = 0;
Q
Qiao Longfei 已提交
87 88
    framework::Tensor *recv_tensor =
        recv_var->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
89
    auto dev_ctx = paddle::platform::CPUDeviceContext();
Q
Qiao Longfei 已提交
90
    int64_t recv_numel = 0;
Q
Qiao Longfei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    for (auto &recv_var_name : rpc_ctx.splited_var_names) {
      auto *recv_var = local_scope->FindVar(recv_var_name);
      if (recv_var->IsType<framework::LoDTensor>()) {
        auto &in = recv_var->Get<framework::LoDTensor>();
        recv_numel += in.numel();
        auto in_stride = framework::stride_numel(in.dims());
        auto out_stride = framework::stride_numel(recv_tensor->dims());
        StridedNumelCopyWithAxis<T>(
            dev_ctx, 0, recv_tensor->data<T>() + output_offset, out_stride,
            in.data<T>(), in_stride, in_stride[0]);
        output_offset += in_stride[0];
      } else if (recv_var->IsType<framework::SelectedRows>()) {
        auto &recv_slr = recv_var->Get<framework::SelectedRows>();
        auto &recv_dims = recv_tensor->dims();
        int64_t width = recv_dims[1];
Q
Qiao Longfei 已提交
106
        recv_numel += recv_slr.height() * width;
Q
Qiao Longfei 已提交
107 108 109 110
        PADDLE_ENFORCE_EQ(recv_slr.value().dims()[1], width);
        PADDLE_ENFORCE_EQ(recv_slr.value().dims()[0], recv_slr.rows().size());
        VLOG(3) << "recv slr " << recv_var_name << " dims "
                << recv_slr.value().dims();
Q
Qiao Longfei 已提交
111 112 113 114 115 116 117 118 119 120
        if (VLOG_IS_ON(3)) {
          std::ostringstream sstream;
          sstream << "[";
          for (auto &row_id : recv_slr.rows()) {
            sstream << row_id << ", ";
          }
          sstream << "]";
          VLOG(3) << "recv_slr size: " << recv_slr.rows().size() << " "
                  << sstream.str();
        }
Q
Qiao Longfei 已提交
121

122
        for (size_t i = 0; i < recv_slr.rows().size(); ++i) {
Q
Qiao Longfei 已提交
123
          auto row_id = recv_slr.rows()[i] + row_offset;
Q
Qiao Longfei 已提交
124
          PADDLE_ENFORCE_LT(row_id, recv_dims[0]);
Q
Qiao Longfei 已提交
125 126 127
          memcpy(recv_tensor->data<T>() + row_id * width,
                 recv_slr.value().data<T>() + i * width, sizeof(T) * width);
        }
Q
Qiao Longfei 已提交
128
        row_offset += recv_slr.height();
Q
Qiao Longfei 已提交
129 130 131
      } else {
        PADDLE_THROW("unsupported recieved var type");
      }
Q
Qiao Longfei 已提交
132
    }
Q
Qiao Longfei 已提交
133
    auto numel = recv_tensor->numel();
134 135 136 137 138 139
    PADDLE_ENFORCE_EQ(
        recv_numel, numel,
        platform::errors::InvalidArgument(
            "The number of receive tensor's elements are not valid. The "
            "recevie tensor numel is %d, the actual tensor numel is %d.",
            recv_numel, numel));
140 141 142 143 144 145 146 147 148 149 150 151 152
  } else if (recv_var->IsType<framework::SelectedRows>()) {
    auto cpu_place = platform::CPUPlace();
    auto *slr = recv_var->GetMutable<framework::SelectedRows>();
    slr->mutable_rows()->clear();
    slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    int64_t width = 0;
    int64_t height = 0;
    std::vector<int64_t> new_rows{};

    // trans sparse ids from local to global
    std::vector<int64_t> abs_sections =
        ToAbsoluteSection(rpc_ctx.height_sections);

153
    for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) {
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      auto &recv_var_name = rpc_ctx.splited_var_names[i];
      auto *var = local_scope->FindVar(recv_var_name);
      auto *var_slr = var->GetMutable<framework::SelectedRows>();
      auto *var_slr_row = var_slr->mutable_rows();
      width = var_slr->mutable_value()->dims()[1];
      height += var_slr->height();
      auto row_offset = abs_sections[i];
      VLOG(4) << "Recv split_var " << recv_var_name << " Row size "
              << var_slr_row->size();
      for (size_t j = 0; j < var_slr_row->size(); j++) {
        new_rows.push_back(row_offset + (*var_slr_row)[j]);
      }
    }
    slr->set_rows(new_rows);
    slr->set_height(height);
    slr->mutable_value()->mutable_data<float>(
        framework::make_ddim(
            {static_cast<int64_t>(slr->mutable_rows()->size()), width}),
        cpu_place);
    auto *slr_data = slr->mutable_value()->data<float>();

    size_t row_offset = 0;
    for (auto &recv_var_name : rpc_ctx.splited_var_names) {
      auto *var = local_scope->FindVar(recv_var_name);
      auto *var_slr = var->GetMutable<framework::SelectedRows>();
      auto *var_slr_row = var_slr->mutable_rows();
      auto var_slr_row_size = var_slr_row->size();
      auto *var_slr_data = var_slr->mutable_value()->data<float>();

      memcpy(slr_data + row_offset * width, var_slr_data,
             sizeof(float) * width * var_slr_row_size);
      row_offset += var_slr_row_size;
    }
Q
Qiao Longfei 已提交
187 188
  }

189
  VLOG(2) << "ParameterRecv out " << rpc_ctx.var_name;
Q
Qiao Longfei 已提交
190 191 192 193 194 195 196
}

template struct ParameterRecv<float>;

};  // namespace distributed
};  // namespace operators
};  // namespace paddle