optimizer.html 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Optimizer Design &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
125 126 127 128 129
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html#">概述</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html#">环境准备</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html#">启动参数说明</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html#">使用分布式计算平台或工具</a></li>
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Optimizer Design</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="optimizer-design">
<span id="optimizer-design"></span><h1>Optimizer Design<a class="headerlink" href="#optimizer-design" title="永久链接至标题"></a></h1>
<div class="section" id="the-problem">
<span id="the-problem"></span><h2>The Problem<a class="headerlink" href="#the-problem" title="永久链接至标题"></a></h2>
<p>A PaddlePaddle program, or a block, is a sequence of operators operating variables.  A training program needs to do three kinds of works:</p>
<ol class="simple">
<li>the forward pass, which computes intermediate results and the cost(s),</li>
<li>the backward pass, which derives gradients from intermediate results and costs, and</li>
<li>the optimization pass, which update model parameters to optimize the cost(s).</li>
</ol>
<p>These works rely on three kinds of operators:</p>
<ol class="simple">
<li>forward operators,</li>
<li>gradient operators, and</li>
<li>optimization operators.</li>
</ol>
<p>It&#8217;s true that users should be able to create all these operators manually by calling some low-level API, but it would be much more convenient if they could only describe the forward pass and let PaddlePaddle create the backward and optimization operators automatically.</p>
<p>In this design, we propose a high-level API that automatically derives the optimisation pass and operators from the forward pass.</p>
</div>
<div class="section" id="high-level-python-api-to-describe-the-training-process">
<span id="high-level-python-api-to-describe-the-training-process"></span><h2>High-level Python API to describe the training process<a class="headerlink" href="#high-level-python-api-to-describe-the-training-process" title="永久链接至标题"></a></h2>
<ol>
<li><p class="first">User write code to describe the network:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">images</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;images&quot;</span><span class="p">)</span>
<span class="n">labels</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;labels&quot;</span><span class="p">)</span>
<span class="n">w1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="s2">&quot;w1&quot;</span><span class="p">)</span>
<span class="n">b1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="s2">&quot;b1&quot;</span><span class="p">)</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">w</span><span class="o">=</span><span class="n">w1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">b1</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">mse</span><span class="p">(</span><span class="n">hidden</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
</pre></div>
</div>
<p>The above code snippet will create forward operators in <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md">Block</a>.</p>
</li>
</ol>
<ol>
<li><p class="first">Users create a certain kind of Optimizer with some argument.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">optimizer</span> <span class="o">=</span> <span class="n">AdagradOptimizer</span><span class="p">(</span><span class="n">learing_rate</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p class="first">Users use the optimizer to <code class="docutils literal"><span class="pre">minimize</span></code> a certain <code class="docutils literal"><span class="pre">cost</span></code> through updating parameters in parameter_list.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">opt_op_list</span> <span class="o">=</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">cost</span><span class="p">,</span> <span class="n">parameter_list</span><span class="o">=</span><span class="p">[</span><span class="n">w1</span><span class="p">,</span> <span class="n">b1</span><span class="p">])</span>
</pre></div>
</div>
<p>The above code snippet will create gradient and optimization operators in Block. The return value of <code class="docutils literal"><span class="pre">minimize()</span></code> is list of optimization operators that will be run by session.</p>
</li>
<li><p class="first">Users use Session/Executor to run this opt_op_list as target to do training.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sess</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">target</span><span class="o">=</span> <span class="n">opt_op_list</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
</li>
</ol>
<div class="section" id="optimizer-python-interface">
<span id="optimizer-python-interface"></span><h3>Optimizer Python interface:<a class="headerlink" href="#optimizer-python-interface" title="永久链接至标题"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Optimizer</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Optimizer Base class.</span>

<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="k">pass</span>

    <span class="k">def</span> <span class="nf">create_optimization_pass</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">parameters_and_grads</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Add optimization operators to update gradients to variables.</span>

<span class="sd">        Args:</span>
<span class="sd">          parameters_and_grads: a list of (variable, gradient) pair to update.</span>

<span class="sd">        Returns:</span>
<span class="sd">          optmization_op_list: a list of optimization operator that will update parameter using gradient.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="bp">None</span>

    <span class="k">def</span> <span class="nf">minimize</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span> <span class="n">parameter_list</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Add operations to minimize `loss` by updating `parameter_list`.</span>

274
<span class="sd">        This method combines interface `append_backward_ops()` and</span>
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
<span class="sd">        `create_optimization_pass()` into one.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">params_grads</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">create_backward_pass</span><span class="p">(</span><span class="n">loss</span><span class="p">,</span> <span class="n">parameter_list</span><span class="p">)</span>
        <span class="n">update_ops</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">create_optimization_pass</span><span class="p">(</span><span class="n">params_grads</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">update_ops</span>

</pre></div>
</div>
<p>Users can inherit the Optimizer above to create their own Optimizer with some special logic, such as AdagradOptimizer.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>