sampling_id_op.h 2.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

#pragma once

#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
#include <sstream>
#include <vector>

#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("X");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int width = static_cast<int>(input->dims()[1]);

39 40 41 42 43 44 45 46 47
    PADDLE_ENFORCE_GE(
        batch_size, 0,
        platform::errors::InvalidArgument(
            "batch_size(dims[0]) must be nonnegative. but it is %d.",
            batch_size));
    PADDLE_ENFORCE_GE(
        width, 0,
        platform::errors::InvalidArgument(
            "width(dims[1]) must be nonnegative. but it is %d.", width));
T
tangwei12 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61

    std::vector<T> ins_vector;
    framework::TensorToVector(*input, context.device_context(), &ins_vector);

    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
        static_cast<T>(context.Attr<float>("min")),
        static_cast<T>(context.Attr<float>("max")));

Z
zenghsh3 已提交
62
    std::vector<int64_t> ids(batch_size);
Z
refine  
zenghsh3 已提交
63
    for (int i = 0; i < batch_size; ++i) {
T
tangwei12 已提交
64 65 66 67 68 69 70 71
      T r = dist(engine);
      int idx = width - 1;
      for (int j = 0; j < width; ++j) {
        if ((r -= ins_vector[i * width + j]) < 0) {
          idx = j;
          break;
        }
      }
Z
zenghsh3 已提交
72
      ids[i] = int64_t(idx);
T
tangwei12 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86
    }

    std::vector<int64_t> out_dim;
    out_dim.push_back(static_cast<int64_t>(batch_size));

    Tensor* output = context.Output<Tensor>("Out");
    output->Resize(framework::make_ddim(out_dim));
    output->mutable_data<T>(context.GetPlace());
    framework::TensorFromVector(ids, context.device_context(), output);
  }
};

}  // namespace operators
}  // namespace paddle