primops.py 12.9 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
17

L
levi131 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
from .primreg import REGISTER_FN


def _simple_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type=optype, inputs={'X': x}, outputs={'Y': out}, attrs={})
    return out


def _simple_binop(helper):
    optype = helper.layer_type
    x, y, out = tuple(map(helper.kwargs.get, ('x', 'y', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

37 38 39 40 41 42 43
    helper.append_op(type=optype,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs={})
L
levi131 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    return out


def _manipulation_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))

    attrs = {
        k: helper.kwargs[k]
        for k in ('shape', 'axis', 'index') if k in helper.kwargs
    }

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

59 60 61 62
    helper.append_op(type=optype,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    return out


# Each primitive op is given a Python constructor for sake of convenience.
def fill_const(value, shape, dtype, out=None):
    attrs = {'value': value, 'shape': shape, 'dtype': dtype}
    helper = LayerHelper('fill_constant_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type, outputs={'Y': out}, attrs=attrs)
    return out


def neg(x, out=None):
    zero = fill_const(0.0, x.shape, x.dtype)
    return sub(zero, x)


def set_value(x, y, axis, starts, ends, strides, out):
    assert x is out, "x and out should be the same Tensor in set_value"
    attrs = {'axes': axis, 'starts': starts, 'ends': ends, 'steps': strides}
    helper = LayerHelper('set_value', **locals())
85 86 87 88 89 90 91
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'Input': x,
                         'ValueTensor': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
L
levi131 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    return out


@REGISTER_FN('add_p', 'X', 'Y', 'Z')
def add(x, y, out=None):
    return _simple_binop(LayerHelper('add_p', **locals()))


@REGISTER_FN('sub_p', 'X', 'Y', 'Z')
def sub(x, y, out=None):
    return _simple_binop(LayerHelper('sub_p', **locals()))


@REGISTER_FN('mul_p', 'X', 'Y', 'Z')
def mul(x, y, out=None):
    return _simple_binop(LayerHelper('mul_p', **locals()))


@REGISTER_FN('div_p', 'X', 'Y', 'Z')
def div(x, y, out=None):
    return _simple_binop(LayerHelper('div_p', **locals()))


@REGISTER_FN('sqrt_p', 'X', 'Y')
def sqrt(x, out=None):
    return _simple_unop(LayerHelper('sqrt_p', **locals()))


@REGISTER_FN('tanh_p', 'X', 'Y')
def tanh(x, out=None):
    return _simple_unop(LayerHelper('tanh_p', **locals()))


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
@REGISTER_FN('sin_p', 'X', 'Y')
def sin(x, out=None):
    return _simple_unop(LayerHelper('sin_p', **locals()))


@REGISTER_FN('cos_p', 'X', 'Y')
def cos(x, out=None):
    return _simple_unop(LayerHelper('cos_p', **locals()))


@REGISTER_FN('exp_p', 'X', 'Y')
def exp(x, out=None):
    return _simple_unop(LayerHelper('exp_p', **locals()))


140 141 142 143 144
@REGISTER_FN('abs_p', 'X', 'Y')
def abs(x, out=None):
    return _simple_unop(LayerHelper('abs_p', **locals()))


L
levi131 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
@REGISTER_FN('reshape_p', 'X', 'Y')
def reshape(x, shape, out=None):
    return _manipulation_unop(LayerHelper('reshape_p', **locals()))


@REGISTER_FN('broadcast_p', 'X', 'Y')
def broadcast(x, shape, out=None):
    return _manipulation_unop(LayerHelper('broadcast_p', **locals()))


@REGISTER_FN('transpose_p', 'X', 'Y')
def transpose(x, axis=None, out=None):
    return _manipulation_unop(LayerHelper('transpose_p', **locals()))


@REGISTER_FN('split_p', 'X', 'YS')
def split(x, num_or_sections, axis=0, outs=None):
    if isinstance(num_or_sections, (list, tuple)):
        n = len(num_or_sections)
    else:
165 166
        if not isinstance(num_or_sections, int):
            raise TypeError(
167 168
                f'num_or_sections must be int, but got {type(num_or_sections)}.'
            )
L
levi131 已提交
169 170 171 172 173 174 175 176 177 178
        n = num_or_sections

    attrs = {'num_or_sections': num_or_sections, 'axis': axis}

    helper = LayerHelper('split_p', **locals())
    if outs is None:
        outs = [
            helper.create_variable_for_type_inference(dtype=x.dtype)
            for i in range(n)
        ]
179 180 181 182
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'YS': outs},
                     attrs=attrs)
L
levi131 已提交
183 184 185 186 187
    return outs


@REGISTER_FN('concat_p', 'XS', 'Y')
def concat(xs, axis=0, out=None):
188 189
    if isinstance(xs, paddle.fluid.framework.Variable):
        xs = [xs]
L
levi131 已提交
190 191 192 193
    attrs = {'axis': axis}
    helper = LayerHelper('concat_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=xs[0].dtype)
194 195 196 197
    helper.append_op(type=helper.layer_type,
                     inputs={'XS': xs},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
198 199 200
    return out


201 202 203 204
@REGISTER_FN('reduce_sum_p', 'X', 'Y')
def reduce_sum(x, axis=None, keepdim=False, out=None):
    axes = axis or tuple(range(0, len(x.shape)))
    axes = (axes, ) if isinstance(axes, int) else axes
205 206 207 208
    if not isinstance(axis, (tuple, list)):
        raise TypeError(f'axis must be tuple or list, but got {type(axis)}')
    if not isinstance(keepdim, bool):
        raise TypeError(f'keepdim must be bool, but got {type(keepdim)}')
L
levi131 已提交
209

210 211
    attrs = {'axis': axis, 'keepdim': keepdim}
    helper = LayerHelper('reduce_sum_p', **locals())
L
levi131 已提交
212 213 214
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

215 216 217 218
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
219 220 221 222 223 224 225 226 227 228
    return out


@REGISTER_FN('matmul_p', 'X', 'Y', 'Z')
def matmul(x, y, out=None):
    return _simple_binop(LayerHelper('matmul_p', **locals()))


@REGISTER_FN('slice_select_p', 'X', 'Y')
def slice_select(x, axis, starts, ends, strides, out=None):
229 230 231 232 233 234 235 236 237 238 239 240 241 242
    if not isinstance(axis, (list, tuple)):
        raise TypeError(f'Argument type error. `axis` is supposed to be list or'
                        f' tuple but found {type(axis)}.')
    if not isinstance(starts, (list, tuple)):
        raise TypeError(
            f'Argument type error. `starts` is supposed to be list or'
            f' tuple but found {type(starts)}.')
    if not isinstance(ends, (list, tuple)):
        raise TypeError(f'Argument type error. `ends` is supposed to be list or'
                        f' tuple but found {type(ends)}.')
    assert len(axis) == len(starts) == len(ends) == len(strides), (
        f'len(axis), len(starts), len(ends) and len(strides) should be equal, '
        f'but len(axis)={len(axis)}, len(starts)={len(starts)}, '
        f'len(ends)={len(ends)} and len(strides)={len(strides)}')
L
levi131 已提交
243 244 245 246 247

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
248 249 250 251
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
252 253 254 255 256
    return out


@REGISTER_FN('slice_assign_p', 'X', 'Y', 'Z')
def slice_assign(x, y, axis, starts, ends, strides, out=None):
257 258 259 260 261 262 263
    assert len(starts) == len(ends) == len(strides) == len(axis), (
        f'len(starts), len(ends), len(strides) and len(axis) should be equal, '
        f'but len(starts)={len(starts)}, len(ends)={len(ends)}, '
        f'len(strides)={len(strides)} and len(axis)={len(axis)}')
    assert len(y.shape) == len(x.shape), (
        f'len(y.shape) should be equal to len(x.shape), '
        f'but len(y.shape)={len(y.shape)} and len(x.shape)={len(x.shape)}.')
L
levi131 已提交
264 265 266 267 268

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_assign_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
269 270 271 272 273 274 275
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
276 277 278
    return out


279
@REGISTER_FN('gather_p', 'X', 'IndexTensor', 'Y')
L
levi131 已提交
280 281 282 283 284
def gather(x, indextensor, axis, out=None):
    attrs = {'axis': axis}
    helper = LayerHelper('gather_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
285 286 287 288 289 290 291
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'IndexTensor': indextensor
                     },
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
292 293 294 295 296
    return out


@REGISTER_FN('scatter_add_p', 'X', 'Y', 'IndexTensor', 'Z')
def scatter_add(x, y, indextensor, axis, out=None):
297 298 299 300 301 302 303 304 305 306
    assert len(x.shape) == len(y.shape), (
        f'len(x.shape) should be equal to len(y.shape), '
        f'but len(x.shape)={len(x.shape)} and len(y.shape)={len(y.shape)}.')
    assert len(
        indextensor.shape
    ) == 1, f'len(indextensor.shape) must be equal to 1, but got {len(indextensor.shape)}.'
    assert y.shape[axis] == indextensor.shape[0], (
        f'y.shape[axis] should be equal to indextensor.shape[0], '
        f'but y.shape[axis]={y.shape[axis]} and '
        f'indextensor.shape[0]={indextensor.shape[0]}.')
L
levi131 已提交
307 308 309 310
    attrs = {'axis': axis}
    helper = LayerHelper('scatter_add_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
311 312 313 314 315 316 317 318
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y,
                         'IndexTensor': indextensor
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
319
    return out
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356


@REGISTER_FN('log_p', 'X', 'Y')
def log(x, out=None):
    return _simple_unop(LayerHelper('log_p', **locals()))


@REGISTER_FN('select_p', 'Condition', 'X', 'Y', 'Z')
def select(cond, x, y, out=None):
    if len(cond.shape) != len(x.shape):
        raise ValueError(
            "len(cond.shape) should be equal to len(x.shape), but len(cond.shape)={} and len(x.shape)={}."
            .format(len(cond.shape), len(x.shape)))

    if len(x.shape) != len(y.shape):
        raise ValueError(
            "len(x.shape) should be equal to len(y.shape), but len(x.shape)={} and len(y.shape)={}."
            .format(len(x.shape), len(y.shape)))

    helper = LayerHelper('select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'Condition': cond,
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out})
    return out


@REGISTER_FN('eq_p', 'X', 'Y', 'Z')
def eq(x, y, out=None):
    return _simple_binop(LayerHelper('eq_p', **locals()))


357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
@REGISTER_FN('gt_p', 'X', 'Y', 'Z')
def gt(x, y, out=None):
    return _simple_binop(LayerHelper('gt_p', **locals()))


@REGISTER_FN('ge_p', 'X', 'Y', 'Z')
def ge(x, y, out=None):
    return _simple_binop(LayerHelper('ge_p', **locals()))


@REGISTER_FN('ne_p', 'X', 'Y', 'Z')
def ne(x, y, out=None):
    return _simple_binop(LayerHelper('ne_p', **locals()))


372 373 374
@REGISTER_FN('pow_p', 'X', 'Y', 'Z')
def pow(x, y, out=None):
    return _simple_binop(LayerHelper('pow_p', **locals()))
375 376 377 378 379


@REGISTER_FN('max_p', 'X', 'Y', 'Z')
def max(x, y, out=None):
    return _simple_binop(LayerHelper('max_p', **locals()))
380 381 382 383 384


@REGISTER_FN('erf_p', 'X', 'Y')
def erf(x, out=None):
    return _simple_unop(LayerHelper('erf_p', **locals()))
385 386 387 388 389 390 391 392 393 394 395 396


@REGISTER_FN('cast_p', 'X', 'Y')
def cast(x, dtype, out=None):
    helper = LayerHelper('cast_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs={'dtype': dtype})
    return out