fc.cc 4.3 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/anakin/convert/fc.h"
F
flame 已提交
16
#include <algorithm>
17 18
#include <string>
#include <vector>
F
flame 已提交
19 20 21 22 23

using anakin::graph::GraphGlobalMem;
using anakin::AK_FLOAT;
using anakin::saber::NV;
using anakin::saber::Shape;
F
flame 已提交
24 25 26 27 28

namespace paddle {
namespace inference {
namespace anakin {

29
void FcBaseOpConverter::operator()(const framework::proto::OpDesc &op,
30
                                   const framework::BlockDesc &block_desc,
31 32
                                   const framework::Scope &scope,
                                   bool test_mode) {
F
flame 已提交
33
  framework::OpDesc op_desc(op, nullptr);
34 35 36 37 38 39 40 41 42
  auto input_names = op_desc.InputNames();
  bool with_bias = input_names.size() == 3;

  std::string w_name = "Y";
  std::string i_name = "X";
  if (with_bias) {
    w_name = "W";
    i_name = "Input";
  }
F
flame 已提交
43

F
flame 已提交
44
  auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front();
45 46 47

  // get weights
  auto *y_v = scope.FindVar(op_desc.Input(w_name).front());
F
flame 已提交
48 49 50
  PADDLE_ENFORCE_NOT_NULL(y_v);
  auto *y_t = y_v->GetMutable<framework::LoDTensor>();

51
  auto input_name = op_desc.Input(i_name).front();
F
flame 已提交
52 53 54
  auto output_name = op_desc.Output("Out").front();

  engine_->AddOp(op_name, "Dense", {input_name}, {output_name});
55
  engine_->AddOpAttr(op_name, "bias_term", with_bias);
F
flame 已提交
56
  engine_->AddOpAttr(op_name, "axis", 1);
57 58

  auto weight_shape = framework::vectorize2int(y_t->dims());
F
flame 已提交
59 60
  int out_dim = weight_shape[1];
  engine_->AddOpAttr(op_name, "out_dim", out_dim);
61 62
  const int w_m = weight_shape[0];
  const int w_k = weight_shape[1];
F
flame 已提交
63

64 65 66
  if (weight_shape.size() < 4UL) {
    weight_shape.insert(weight_shape.begin(), 4UL - weight_shape.size(), 1);
  }
F
flame 已提交
67 68 69 70 71
  Shape anakin_shape(weight_shape);

  framework::LoDTensor weight_tensor;
  weight_tensor.Resize(y_t->dims());
  TensorCopySync((*y_t), platform::CPUPlace(), &weight_tensor);
72 73
  auto *weight_data = weight_tensor.data<float>();
  PADDLE_ENFORCE(w_m * w_k == weight_tensor.numel());
F
flame 已提交
74

75 76 77 78 79 80
  std::vector<float> trans_weight_data(weight_tensor.numel());
  for (int i = 0; i < w_m; i++) {
    for (int j = 0; j < w_k; j++) {
      trans_weight_data[i + j * w_m] = weight_data[i * w_k + j];
    }
  }
F
flame 已提交
81 82 83
  auto *weight1 =
      GraphGlobalMem<NV>::Global().template new_block<AK_FLOAT>(anakin_shape);
  float *cpu_data = static_cast<float *>(weight1->h_tensor().mutable_data());
84
  std::copy_n(trans_weight_data.data(), weight_tensor.numel(), cpu_data);
F
flame 已提交
85 86 87
  weight1->d_tensor().set_shape(anakin_shape);
  weight1->d_tensor().copy_from(weight1->h_tensor());
  engine_->AddOpAttr(op_name, "weight_1", *weight1);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

  // get bias
  if (with_bias) {
    auto *b_v = scope.FindVar(op_desc.Input("Bias").front());
    PADDLE_ENFORCE_NOT_NULL(b_v);
    auto *b_t = b_v->GetMutable<framework::LoDTensor>();

    auto bias_shape = framework::vectorize2int(b_t->dims());
    framework::LoDTensor bias_tensor;
    bias_tensor.Resize(b_t->dims());
    TensorCopySync((*b_t), platform::CPUPlace(), &bias_tensor);
    auto *bias_data = bias_tensor.data<float>();
    bias_shape.insert(bias_shape.begin(), 1);
    bias_shape.insert(bias_shape.begin(), 1);
    bias_shape.insert(bias_shape.begin(), 1);
    // bias_shape.push_back(1);
    // bias_shape.push_back(1);
    Shape anakin_bias_shape(bias_shape);

    auto *weight2 = GraphGlobalMem<NV>::Global().template new_block<AK_FLOAT>(
        anakin_bias_shape);
    float *cpu_data2 = static_cast<float *>(weight2->h_tensor().mutable_data());
    std::copy_n(bias_data, bias_tensor.numel(), cpu_data2);
    weight2->d_tensor().set_shape(anakin_bias_shape);
    weight2->d_tensor().copy_from(weight2->h_tensor());
    engine_->AddOpAttr(op_name, "weight_2", *weight2);
  }
F
flame 已提交
115 116 117 118 119
}

}  // namespace anakin
}  // namespace inference
}  // namespace paddle
120

121
REGISTER_ANAKIN_OP_CONVERTER(mul, MulOpConverter);
122
REGISTER_ANAKIN_OP_CONVERTER(fc, FcOpConverter);