gelu_op.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include <unordered_map>

#include "paddle/fluid/operators/gelu_op.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

class GeluOp : public framework::OperatorWithKernel {
 public:
  GeluOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of GeluOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(%s) of GeluOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
A
Adam 已提交
47 48
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
49
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
50 51 52
#ifdef PADDLE_WITH_MKLDNN
    auto it = this->Attrs().find("use_mkldnn");
    if (library == framework::LibraryType::kPlain &&
53
        it != this->Attrs().end() && this->CanMKLDNNBeUsed(ctx, data_type)) {
A
Adam 已提交
54 55 56 57
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
58
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  }
};

class GeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument(
            "Input(%s) of GeluGradOp should not be null.", "DOut"));
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of GeluGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument(
            "Output(%s) of GeluGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
A
Adam 已提交
86 87
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
88
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
89 90 91
#ifdef PADDLE_WITH_MKLDNN
    auto it = this->Attrs().find("use_mkldnn");
    if (library == framework::LibraryType::kPlain &&
92
        it != this->Attrs().end() && this->CanMKLDNNBeUsed(ctx, data_type)) {
A
Adam 已提交
93 94 95 96
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
97
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
98 99 100 101 102 103 104 105 106 107 108 109 110 111
  }
};

class GeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Gelu operator");
    AddOutput("Out", "Output of Gelu operator");
    AddAttr<bool>("approximate",
                  "(bool, default false) use approximation of gelu")
        .SetDefault(false);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
112 113 114 115 116
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    AddAttr<bool>("use_cudnn",
                  "(bool, default false) Only used in cudnn kernel, need "
                  "install cudnn")
        .SetDefault(false);
    AddComment(R"DOC(
Gelu Activation Operator. 

For more details, please refer to [Gaussian Error Linear Units](https://arxiv.org/pdf/1606.08415.pdf).

when using approximation
$out = \\frac{1}{2}x(1+tanh(\\sqrt{\\frac{2}{\\pi}}(x+0.044715x^{3}))$

or else
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC");
  }
};

template <typename T>
class GeluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("gelu_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(gelu, ops::GeluOp, ops::GeluOpMaker,
                  ops::GeluGradOpMaker<paddle::framework::OpDesc>,
                  ops::GeluGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(gelu_grad, ops::GeluGradOp);
REGISTER_OP_CPU_KERNEL(
    gelu, ops::GeluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GeluKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    gelu_grad, ops::GeluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GeluGradKernel<paddle::platform::CPUDeviceContext, double>);