post_training_quantization.py 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18 19 20 21
import logging
import numpy as np
from .... import io
from .... import core
from .... import framework
22
from ....executor import global_scope, Executor
23 24 25 26 27
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
28
from .quantization_pass import _op_real_in_out_name
29

30
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
31 32 33 34 35

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
    return np.array(scope.find_var(var_name).get_tensor())


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


55 56 57
class PostTrainingQuantization(object):
    def __init__(self,
                 executor,
58 59 60 61
                 sample_generator,
                 model_dir,
                 model_filename=None,
                 params_filename=None,
62 63 64 65
                 batch_size=10,
                 batch_nums=None,
                 scope=None,
                 algo="KL",
66
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
67 68 69
                 is_full_quantize=False,
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
70 71 72 73 74 75 76 77 78
        '''
        The class utilizes post training quantization methon to quantize the 
        fp32 model. It uses calibrate data to calculate the scale factor of 
        quantized variables, and inserts fake quant/dequant op to obtain the 
        quantized model.

        Args:
            executor(fluid.Executor): The executor to load, run and save the 
                quantized model.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            sample_generator(Python Generator): The sample generator provides 
                calibrate data for DataLoader, and it only returns a sample every 
                time.
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
95 96 97 98 99 100 101
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
            algo(str, optional): If algo=KL, use KL-divergenc method to 
                get the more precise scale factor. If algo='direct', use 
                abs_max methon to get the scale factor. Default is KL.
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
102 103
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
104
                apply quantization to all supported quantizable op type. If set
105 106
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
107 108 109 110 111 112 113
            is_use_cache_file(bool, optional): If set is_use_cache_file as False,
                all temp data will be saved in memory. If set is_use_cache_file as True,
                it will save temp data to disk. When the fp32 model is complex or
                the number of calibrate data is large, we should set is_use_cache_file
                as True. Defalut is False.
            cache_dir(str, optional): When is_use_cache_file is True, set cache_dir as
                the directory for saving temp data. Default is ./temp_post_training.
114 115 116
        Returns:
            None

117 118 119 120 121 122
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
123 124 125 126 127 128 129 130 131
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
132
            # sample generator must return a sample every time. The reference
133 134 135
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
136 137 138
            batch_size = 10
            batch_nums = 10
            algo = "KL"
139
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
140 141
            ptq = PostTrainingQuantization(
                        executor=exe,
142 143 144 145
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
146 147 148 149 150 151 152 153
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
        self._executor = executor
154 155 156 157
        self._sample_generator = sample_generator
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
158 159 160 161
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._scope = global_scope() if scope == None else scope
        self._algo = algo
162 163 164 165
        self._is_use_cache_file = is_use_cache_file
        self._cache_dir = cache_dir
        if self._is_use_cache_file and not os.path.exists(self._cache_dir):
            os.mkdir(self._cache_dir)
166 167 168 169 170 171 172 173 174 175 176 177

        supported_quantizable_op_type = \
            QuantizationTransformPass._supported_quantizable_op_type + \
            AddQuantDequantPass._supported_quantizable_op_type
        if is_full_quantize:
            self._quantizable_op_type = supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
                assert op_type in supported_quantizable_op_type + \
                    AddQuantDequantPass._activation_type, \
                    op_type + " is not supported for quantization."
178 179 180 181 182 183 184

        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

185
        self._op_real_in_out_name = _op_real_in_out_name
186
        self._bit_length = 8
187 188
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
189 190 191 192 193 194 195 196
        self._sampling_data = {}
        self._quantized_var_scale_factor = {}

    def quantize(self):
        '''
        Quantize the fp32 model. Use calibrate data to calculate the scale factor of 
        quantized variables, and inserts fake quant/dequant op to obtain the 
        quantized model.
197 198 199 200

        Args:
            None
        Returns:
201 202
            the program of quantized model.
        '''
203
        self._preprocess()
204 205 206 207 208

        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
209 210
                               fetch_list=self._fetch_list,
                               return_numpy=False)
211 212
            self._sample_data(batch_id)

213 214 215 216 217 218 219
            if batch_id % 5 == 0:
                _logger.info("run batch: " + str(batch_id))
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
        _logger.info("all run batch: " + str(batch_id))

220
        _logger.info("calculate scale factor ...")
221
        self._calculate_scale_factor()
222 223

        _logger.info("update the program ...")
224 225
        self._update_program()

226
        self._save_output_scale()
227 228 229 230 231 232 233 234
        return self._program

    def save_quantized_model(self, save_model_path):
        '''
        Save the quantized model to the disk.

        Args:
            save_model_path(str): The path to save the quantized model
235
        Returns:
236 237 238 239 240 241 242 243 244
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)

245
    def _preprocess(self):
246 247 248 249 250 251
        '''
        Load model and set data loader, collect the variable names for sampling, 
        and set activation variables to be persistable.
        '''
        # load model and set data loader
        [self._program, self._feed_list, self._fetch_list] = \
252 253 254 255
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
256 257 258 259 260
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
        self._data_loader.set_sample_generator(
261
            self._sample_generator,
262 263 264 265
            batch_size=self._batch_size,
            drop_last=True,
            places=self._place)

266 267 268
        # collect the variable names for sampling.
        # TODO(juncaipeng), consider the name_scope of skip_quant and
        # reduce the variables for sampling
269 270 271 272 273
        persistable_var_names = []
        for var in self._program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)

274
        for op in self._program.global_block().ops:
275 276 277
            op_type = op.type
            if op_type in self._quantizable_op_type:
                if op_type in ("conv2d", "depthwise_conv2d"):
278 279 280
                    self._quantized_act_var_name.add(op.input("Input")[0])
                    self._quantized_weight_var_name.add(op.input("Filter")[0])
                    self._quantized_act_var_name.add(op.output("Output")[0])
281 282 283 284 285 286 287 288 289
                elif op_type in ["mul", "matmul"]:
                    x_var_name = op.input("X")[0]
                    if x_var_name in persistable_var_names:
                        self._quantized_weight_var_name.add(x_var_name)
                    else:
                        self._quantized_act_var_name.add(x_var_name)
                    y_var_name = op.input("Y")[0]
                    if y_var_name in persistable_var_names:
                        self._quantized_weight_var_name.add(y_var_name)
290
                    else:
291 292
                        self._quantized_act_var_name.add(y_var_name)
                    self._quantized_act_var_name.add(op.output("Out")[0])
293 294 295 296 297 298 299 300
                else:
                    # process other quantizable op type, the input must all not persistable
                    if self._is_input_all_not_persistable(
                            op, persistable_var_names):
                        input_output_name_list = self._op_real_in_out_name[
                            op_type]
                        for input_name in input_output_name_list[0]:
                            for var_name in op.input(input_name):
301
                                self._quantized_act_var_name.add(var_name)
302 303
                        for output_name in input_output_name_list[1]:
                            for var_name in op.output(output_name):
304
                                self._quantized_act_var_name.add(var_name)
305 306 307

        # set activation variables to be persistable, so can obtain 
        # the tensor data in sample_data
308 309 310 311
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

312
    def _sample_data(self, iter):
313 314 315 316 317 318
        '''
        Sample the tensor data of quantized variables, 
        applied in every iteration.
        '''
        for var_name in self._quantized_weight_var_name:
            if var_name not in self._sampling_data:
319
                var_tensor = _load_variable_data(self._scope, var_name)
320 321
                self._sampling_data[var_name] = var_tensor

322 323
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
324
                var_tensor = _load_variable_data(self._scope, var_name)
325 326 327 328 329 330 331 332
                var_tensor = var_tensor.ravel()
                save_path = os.path.join(self._cache_dir,
                                         var_name + "_" + str(iter) + ".npy")
                np.save(save_path, var_tensor)
        else:
            for var_name in self._quantized_act_var_name:
                if var_name not in self._sampling_data:
                    self._sampling_data[var_name] = []
333
                var_tensor = _load_variable_data(self._scope, var_name)
334 335
                var_tensor = var_tensor.ravel()
                self._sampling_data[var_name].append(var_tensor)
336 337 338 339 340

    def _calculate_scale_factor(self):
        '''
        Calculate the scale factor of quantized variables.
        '''
341
        # apply channel_wise_abs_max quantization for weights
342 343 344 345 346 347 348 349 350
        for var_name in self._quantized_weight_var_name:
            data = self._sampling_data[var_name]
            scale_factor_per_channel = []
            for i in range(data.shape[0]):
                abs_max_value = np.max(np.abs(data[i]))
                scale_factor_per_channel.append(abs_max_value)
            self._quantized_var_scale_factor[
                var_name] = scale_factor_per_channel

351
        # apply kl quantization for activation
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
                sampling_data = []
                filenames = [f for f in os.listdir(self._cache_dir) \
                    if re.match(var_name + '_[0-9]+.npy', f)]
                for filename in filenames:
                    file_path = os.path.join(self._cache_dir, filename)
                    sampling_data.append(np.load(file_path))
                    os.remove(file_path)
                sampling_data = np.concatenate(sampling_data)

                if self._algo == "KL":
                    self._quantized_var_scale_factor[var_name] = \
                        self._get_kl_scaling_factor(np.abs(sampling_data))
                else:
                    self._quantized_var_scale_factor[var_name] = \
                        np.max(np.abs(sampling_data))
        else:
            for var_name in self._quantized_act_var_name:
                self._sampling_data[var_name] = np.concatenate(
                    self._sampling_data[var_name])
                if self._algo == "KL":
                    self._quantized_var_scale_factor[var_name] = \
                        self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
                else:
                    self._quantized_var_scale_factor[var_name] = \
                        np.max(np.abs(self._sampling_data[var_name]))
379 380 381 382 383

    def _update_program(self):
        '''
        Insert fake_quantize/fake_dequantize op to the program.
        '''
384
        # reset quantized activation variable
385 386 387 388 389 390 391
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

        # use QuantizationTransformPass to insert fake_quantize/fake_dequantize op
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

392 393
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
394
            if op_type in self._quantizable_op_type:
395
                major_quantizable_op_types.append(op_type)
396 397 398 399 400 401 402
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
            weight_bits=self._bit_length,
            activation_bits=self._bit_length,
            activation_quantize_type='moving_average_abs_max',
            weight_quantize_type='channel_wise_abs_max',
403
            quantizable_op_type=major_quantizable_op_types)
404 405 406
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
407 408
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
409
            if op_type in self._quantizable_op_type:
410
                minor_quantizable_op_types.append(op_type)
411 412 413
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
414
            quantizable_op_type=minor_quantizable_op_types)
415 416 417 418
        add_quant_dequant_pass.apply(graph)

        # save scale factor to scale var node
        for key, val in self._quantized_var_scale_factor.items():
419 420 421 422 423
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
424
                    [val], dtype=np.float32))
425 426 427 428 429
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
430 431 432 433 434 435 436 437 438
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
            weight_bits=self._bit_length,
            activation_bits=self._bit_length,
            weight_quantize_type='channel_wise_abs_max',
439
            quantizable_op_type=major_quantizable_op_types)
440 441 442
        freeze_pass.apply(graph)
        self._program = graph.to_program()

443 444 445 446 447 448 449 450 451
    def _save_output_scale(self):
        '''
        Save output scale to the quantized op.
        '''
        output_scale_name = "output_scale"
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
                output_name_list = self._op_real_in_out_name[op.type][1]
                for output_name in output_name_list:
452 453 454 455 456
                    for output_var_name in op.output(output_name):
                        if output_var_name in self._quantized_var_scale_factor:
                            op._set_attr(output_scale_name,
                                         self._quantized_var_scale_factor[
                                             output_var_name])
457 458 459 460 461 462 463 464 465 466 467 468 469 470

    def _is_input_all_not_persistable(self, op, persistable_var_names):
        '''
        Analyze the real inputs of the op are all not persistable.
        '''
        is_input_all_not_persistable = True
        input_name_list = self._op_real_in_out_name[op.type][0]
        for input_name in input_name_list:
            for var_name in op.input(input_name):
                if var_name in persistable_var_names:
                    is_input_all_not_persistable = False
                    break
        return is_input_all_not_persistable

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    def _get_kl_scaling_factor(self, activation_blob, num_quantized_bins=255):
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
        max_val = np.max(activation_blob)
        min_val = np.min(activation_blob)
        if min_val >= 0:
            hist, hist_edeges = np.histogram(
                activation_blob, bins=2048, range=(min_val, max_val))
            ending_iter = 2047
            starting_iter = int(ending_iter * 0.7)
        else:
            _logger.error("Please first apply abs to activation_blob.")
        bin_width = hist_edeges[1] - hist_edeges[0]

        P_sum = len(np.array(activation_blob).ravel())
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
572 573
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
574 575 576
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
                               quantize_weight_bits=8,
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
            quantize_weight_bits(int, optional): The bits for the quantized
                weight, and it should be 8 or 16. Default is 8.
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
                "input error:" + op_type + \
                " is not supported for weight quantization."
        assert quantize_weight_bits in [8, 16], \
            "input error: quantize_weight_bits should be 8 or 16."
        quantize_range = (1 << (quantize_weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if quantize_weight_bits == 8 else np.int16

        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        persistable_var_names = []
        for var in program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)
        for op in program.global_block().ops:
            if op.type in quantizable_op_type:
                for var_name in op.input_arg_names:
                    if var_name in persistable_var_names:
                        var_tensor_data = _load_variable_data(scope, var_name)
                        if abs(threshold_rate) < 1e-10:
                            threshold_value = np.max(np.abs(var_tensor_data))
                        else:
                            threshold_value = self._calculate_threshold(\
                                var_tensor_data, threshold_rate)
                            var_tensor_data[var_tensor_data >
                                            threshold_value] = threshold_value
                            var_tensor_data[var_tensor_data <
                                            -threshold_value] = -threshold_value
                        scale = threshold_value / quantize_range
                        quantized_var_tensor_data = \
                            np.around(var_tensor_data / scale)
                        quantized_var_tensor_data = \
                            quantized_var_tensor_data.astype(save_weight_dtype)
                        _set_variable_data(scope, place, var_name,
                                           quantized_var_tensor_data)
                        op._set_attr(var_name + "_quant_scale", [scale])
                        op._set_attr('quantize_weight_bits',
                                     quantize_weight_bits)

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width