test_RecurrentGradientMachine.cpp 4.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <paddle/utils/Util.h>
#include <paddle/utils/Version.h>
#include <paddle/utils/PythonUtil.h>
#include <paddle/trainer/Trainer.h>
#include <paddle/trainer/TrainerInternal.h>
#include <paddle/gserver/gradientmachines/GradientMachine.h>

23 24
P_DECLARE_int32(seed);

Z
zhangjinchao01 已提交
25
using namespace paddle;  // NOLINT
26
using namespace std;     // NOLINT
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
class TrainerForTest : public paddle::Trainer {
public:
  void startTrain() {
    GradientMachine& gm = *this->trainerInternal_.getGradientMachine();
    gm.start(this->getConfig(), dataProvider_);
  }

  void finishTrain() {
    GradientMachine& gm = *this->trainerInternal_.getGradientMachine();
    gm.finish();
  }

  /**
   * Get total dimension of all parameters.
   *
   * @return the total dimension of all parameters
   */
  size_t getTotalParameterSize() const {
    auto p = const_cast<TrainerForTest*>(this);
46 47 48 49
    auto& params = p->getGradientMachine()->getParameters();
    return std::accumulate(
        params.begin(), params.end(), 0UL,
        [](size_t a, const ParameterPtr& p) { return a + p->getSize(); });
Z
zhangjinchao01 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  }
};

void CalCost(const string& conf, const string& dir, real* cost,
             int num_passes) {
  auto config = std::make_shared<TrainerConfigHelper>(conf);
  TrainerForTest trainer;
  trainer.init(config);
  mkDir(dir.c_str());
  config->setSaveDir(dir);
  auto dataProvider = trainer.getDataProvider();
  int32_t batchSize = config->getOptConfig().batch_size();
  real learningRate = config->getOptConfig().learning_rate();
  real momentum = 0;
  real decayRate = 0;
  int64_t dim = trainer.getTotalParameterSize();
  CpuVector vecW(dim);
  CpuVector vecGradient(dim);
  CpuVector vecMomentum(dim);

  // vecW needs to be assigned, otherwise the variable is an uncertain value.
71 72 73

  *ThreadLocalRand::getSeed() = FLAGS_seed;
  vecW.randnorm(0, 0.1);
74
  vecMomentum.randnorm(0, 0.1);
Z
zhangjinchao01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

  trainer.startTrain();
  for (int i = 0; i < num_passes; ++i) {
    real totalCost = 0;
    dataProvider->reset();
    while (true) {
      DataBatch dataBatch;
      int num = dataProvider->getNextBatch(batchSize, &dataBatch);
      if (num == 0) break;
      totalCost += trainer.calcGradient(dataBatch, vecW, vecGradient);
      sgdUpdate(learningRate, momentum, decayRate, &vecW, &vecGradient,
                &vecMomentum);
    }
    cost[i] = totalCost;
  }
  trainer.finishTrain();
  rmDir(dir.c_str());
}

94 95 96 97 98
void test(const string& conf1, const string& conf2, double eps, bool useGpu) {
  if (!paddle::version::isWithGpu() && useGpu) {
    return;
  }
  FLAGS_use_gpu = useGpu;
Z
zhangjinchao01 已提交
99 100 101 102 103 104 105 106 107 108 109
  int num_passes = 5;
  real* cost1 = new real[num_passes];
  const string dir1 = "gserver/tests/t1";
  CalCost(conf1, dir1, cost1, num_passes);

  real* cost2 = new real[num_passes];
  const string dir2 = "gserver/tests/t2";
  CalCost(conf2, dir2, cost2, num_passes);

  for (int i = 0; i < num_passes; i++) {
    LOG(INFO) << "num_passes: " << i << ", cost1=" << cost1[i]
110 111 112
              << ", cost2=" << cost2[i]
              << ", diff=" << std::abs(cost1[i] - cost2[i]);
    ASSERT_NEAR(cost1[i], cost2[i], eps);
Z
zhangjinchao01 已提交
113 114 115 116 117
  }
  delete[] cost1;
  delete[] cost2;
}

118
TEST(RecurrentGradientMachine, HasSubSequence) {
119 120 121 122 123
  for (bool useGpu : {false, true}) {
    test("gserver/tests/sequence_layer_group.conf",
         "gserver/tests/sequence_nest_layer_group.conf",
         1e-5, useGpu);
  }
124 125 126
}

TEST(RecurrentGradientMachine, rnn) {
127 128 129 130 131
  for (bool useGpu : {false, true}) {
    test("gserver/tests/sequence_rnn.conf",
         "gserver/tests/sequence_nest_rnn.conf",
         1e-6, useGpu);
  }
132 133
}

134 135 136 137 138 139 140
TEST(RecurrentGradientMachine, rnn_multi_input) {
  for (bool useGpu : {false, true}) {
    test("gserver/tests/sequence_rnn_multi_input.conf",
         "gserver/tests/sequence_nest_rnn_multi_input.conf",
         1e-6, useGpu);
  }
}
141

142 143 144 145 146 147 148 149
TEST(RecurrentGradientMachine, rnn_multi_unequalength_input) {
    for (bool useGpu : {false, true}) {
        test("gserver/tests/sequence_rnn_multi_unequalength_inputs.conf",
        "gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf",
             1e-6, useGpu);
    }
}

Z
zhangjinchao01 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
int main(int argc, char** argv) {
  if (paddle::version::isWithPyDataProvider()) {
    if (!paddle::version::isWithGpu()) {
      FLAGS_use_gpu = false;
    }
    initMain(argc, argv);
    initPython(argc, argv);
    testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
  } else {
    return 0;
  }
}