test_sparse_utils_api.cc 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

#include "paddle/pten/api/include/api.h"

#include "paddle/pten/api/include/sparse_api.h"

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/core/sparse_coo_tensor.h"

TEST(API, to_sparse_coo) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc.get(),
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            pten::framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));

  pten::CPUPlace cpu;
  const int64_t sparse_dim = 2;
  auto* dense_x_data = dense_x->mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);

  pten::CPUContext dev_ctx_cpu;
W
Wilber 已提交
50
  dev_ctx_cpu.Init();
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

  // 1. test dense_to_sparse_coo
  paddle::experimental::Tensor x(dense_x);
  auto out = paddle::experimental::sparse::to_sparse_coo(
      x, pten::Backend::CPU, sparse_dim);
  auto coo = std::dynamic_pointer_cast<pten::SparseCooTensor>(out.impl());
  ASSERT_EQ(coo->nnz(), non_zero_num);
  int cmp_indices = memcmp(coo->non_zero_indices().data<int64_t>(),
                           indices_data.data(),
                           indices_data.size() * sizeof(int64_t));
  ASSERT_EQ(cmp_indices, 0);
  int cmp_elements = memcmp(coo->non_zero_elements().data<float>(),
                            non_zero_data.data(),
                            non_zero_data.size() * sizeof(float));
  ASSERT_EQ(cmp_elements, 0);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

  // 1. test sparse_csr_to_coo
  auto dense_dims = pten::framework::make_ddim({3, 3});
  pten::DenseTensorMeta crows_meta(
      pten::DataType::INT64, {dense_dims[0] + 1}, pten::DataLayout::NCHW);
  pten::DenseTensorMeta cols_meta(
      pten::DataType::INT64, {non_zero_num}, pten::DataLayout::NCHW);
  pten::DenseTensorMeta values_meta(
      pten::DataType::FLOAT32, {non_zero_num}, pten::DataLayout::NCHW);

  pten::CPUPlace place;
  pten::DenseTensor crows(alloc.get(), crows_meta);
  pten::DenseTensor cols(alloc.get(), cols_meta);
  pten::DenseTensor values(alloc.get(), values_meta);
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto csr =
      std::make_shared<pten::SparseCsrTensor>(crows, cols, values, dense_dims);
  paddle::experimental::Tensor csr_x(csr);
  auto out2 = paddle::experimental::sparse::to_sparse_coo(
      csr_x, pten::Backend::CPU, sparse_dim);

  auto coo2 = std::dynamic_pointer_cast<pten::SparseCooTensor>(out.impl());
  ASSERT_EQ(coo2->nnz(), non_zero_num);
  int cmp_indices2 = memcmp(coo2->non_zero_indices().data<int64_t>(),
                            indices_data.data(),
                            indices_data.size() * sizeof(int64_t));
  ASSERT_EQ(cmp_indices2, 0);
  int cmp_elements2 = memcmp(coo2->non_zero_elements().data<float>(),
                             non_zero_data.data(),
                             non_zero_data.size() * sizeof(float));
  ASSERT_EQ(cmp_elements2, 0);
105
}
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

TEST(API, to_sparse_csr) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc.get(),
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            pten::framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));

  pten::CPUPlace cpu;
  const int64_t sparse_dim = 2;
  auto* dense_x_data = dense_x->mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);

  pten::CPUContext dev_ctx_cpu;

  // 1. test dense_to_sparse_csr
  paddle::experimental::Tensor x(dense_x);
  auto out = paddle::experimental::sparse::to_sparse_csr(x, pten::Backend::CPU);
  auto csr = std::dynamic_pointer_cast<pten::SparseCsrTensor>(out.impl());
  auto check = [&](const pten::SparseCsrTensor& csr) {
    ASSERT_EQ(csr.non_zero_cols().numel(), non_zero_num);
    int cmp_crows = memcmp(csr.non_zero_crows().data<int64_t>(),
                           crows_data.data(),
                           crows_data.size() * sizeof(int64_t));
    ASSERT_EQ(cmp_crows, 0);
    int cmp_cols = memcmp(csr.non_zero_cols().data<int64_t>(),
                          cols_data.data(),
                          cols_data.size() * sizeof(int64_t));
    ASSERT_EQ(cmp_cols, 0);
    int cmp_elements = memcmp(csr.non_zero_elements().data<float>(),
                              non_zero_data.data(),
                              non_zero_data.size() * sizeof(float));
    ASSERT_EQ(cmp_elements, 0);
  };
  check(*csr);

  // 1. test sparse_coo_to_csr
  auto dense_dims = pten::framework::make_ddim({3, 3});
  pten::DenseTensorMeta indices_meta(pten::DataType::INT64,
                                     {sparse_dim, non_zero_num},
                                     pten::DataLayout::NCHW);
  pten::DenseTensorMeta values_meta(
      pten::DataType::FLOAT32, {non_zero_num}, pten::DataLayout::NCHW);

  pten::CPUPlace place;
  pten::DenseTensor indices(alloc.get(), indices_meta);
  pten::DenseTensor values(alloc.get(), values_meta);
  memcpy(indices.mutable_data<int64_t>(place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto coo =
      std::make_shared<pten::SparseCooTensor>(indices, values, dense_dims);
  paddle::experimental::Tensor coo_x(coo);
  auto out2 =
      paddle::experimental::sparse::to_sparse_csr(coo_x, pten::Backend::CPU);

  auto csr2 = std::dynamic_pointer_cast<pten::SparseCsrTensor>(out.impl());
  check(*csr2);
}
Z
zhangkaihuo 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

TEST(API, to_dense) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  pten::CPUPlace cpu;
  const int64_t sparse_dim = 2;
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;
  auto dense_dims = pten::framework::make_ddim({3, 3});

  pten::CPUContext dev_ctx_cpu;

  // 1. test sparse_coo_to_dense
  pten::DenseTensorMeta indices_meta(pten::DataType::INT64,
                                     {sparse_dim, non_zero_num},
                                     pten::DataLayout::NCHW);
  pten::DenseTensorMeta values_meta(
      pten::DataType::FLOAT32, {non_zero_num}, pten::DataLayout::NCHW);

  pten::CPUPlace place;
  pten::DenseTensor indices(alloc.get(), indices_meta);
  pten::DenseTensor values(alloc.get(), values_meta);
  memcpy(indices.mutable_data<int64_t>(place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto coo =
      std::make_shared<pten::SparseCooTensor>(indices, values, dense_dims);

  paddle::experimental::Tensor coo_x(coo);
  auto out = paddle::experimental::sparse::to_dense(coo_x, pten::Backend::CPU);
  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  int cmp1 =
      memcmp(dense_out->data<float>(), &dense_data[0][0], 9 * sizeof(float));
  ASSERT_EQ(cmp1, 0);

  // 1. test sparse_csr_to_dense
  pten::DenseTensorMeta crows_meta(
      pten::DataType::INT64, {dense_dims[0] + 1}, pten::DataLayout::NCHW);
  pten::DenseTensorMeta cols_meta(
      pten::DataType::INT64, {non_zero_num}, pten::DataLayout::NCHW);
  pten::DenseTensor crows(alloc.get(), crows_meta);
  pten::DenseTensor cols(alloc.get(), cols_meta);
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto csr =
      std::make_shared<pten::SparseCsrTensor>(crows, cols, values, dense_dims);
  paddle::experimental::Tensor csr_x(csr);
  auto out2 = paddle::experimental::sparse::to_dense(csr_x, pten::Backend::CPU);

  auto dense_out2 = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  int cmp2 =
      memcmp(dense_out2->data<float>(), &dense_data[0][0], 9 * sizeof(float));
  ASSERT_EQ(cmp2, 0);
}