test_row_conv_op.py 5.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
Siddharth Goyal 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
S
Siddharth Goyal 已提交
20 21 22 23


def row_conv_forward(x, lod, wt):
    out = np.zeros_like(x)
24 25 26 27
    num_sequences = len(lod[0])
    seq_info = [0]
    for seq_len in lod[0]:
        seq_info.append(seq_info[-1] + seq_len)
S
Siddharth Goyal 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    context_length = wt.shape[0]

    for i in range(num_sequences):  # loop over number of sequences
        start = seq_info[i]
        end = seq_info[i + 1]
        curinput = x[start:end, :]
        curoutput = out[start:end, :]

        cur_timesteps = end - start
        for j in range(cur_timesteps):  # loop over different timesteps
            for k in range(context_length):
                if j + k >= cur_timesteps:
                    continue
                curoutput[j, :] += curinput[j + k, :] * wt[k, :]

    return out


class TestRowConvOp1(OpTest):
    def setUp(self):

        self.op_type = "row_conv"
50 51
        lod = [[2, 3, 2]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
52 53 54 55 56 57 58 59 60 61 62
        D = 16
        context_length = 2

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
63
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
64 65

    def test_check_grad_normal(self):
H
hong 已提交
66 67 68 69 70
        self.check_grad(
            ['X', 'Filter'],
            'Out',
            max_relative_error=0.05,
            check_dygraph=False)
S
Siddharth Goyal 已提交
71 72 73

    def test_check_grad_ignore_x(self):
        self.check_grad(
H
hong 已提交
74 75 76 77 78
            ['Filter'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set('X'),
            check_dygraph=False)
S
Siddharth Goyal 已提交
79 80 81

    def test_check_grad_ignore_wt(self):
        self.check_grad(
H
hong 已提交
82 83 84 85 86
            ['X'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set('Filter'),
            check_dygraph=False)
S
Siddharth Goyal 已提交
87 88 89 90 91 92


class TestRowConvOp2(OpTest):
    def setUp(self):

        self.op_type = "row_conv"
93 94
        lod = [[20, 30, 50]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
95 96 97 98 99 100 101 102 103 104 105
        D = 35
        context_length = 35

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
H
hong 已提交
106
        self.check_output(check_dygraph=False)
S
Siddharth Goyal 已提交
107 108

    #max_relative_error is increased from 0.05 to 0.06 as for higher
109
    #dimensional input, the dX on CPU for some values has max_rel_error
S
Siddharth Goyal 已提交
110 111
    #slightly more than 0.05
    def test_check_grad_normal(self):
H
hong 已提交
112 113 114 115 116
        self.check_grad(
            ['X', 'Filter'],
            'Out',
            max_relative_error=0.06,
            check_dygraph=False)
S
Siddharth Goyal 已提交
117 118 119

    def test_check_grad_ignore_x(self):
        self.check_grad(
H
hong 已提交
120 121 122 123 124
            ['Filter'],
            'Out',
            max_relative_error=0.06,
            no_grad_set=set('X'),
            check_dygraph=False)
S
Siddharth Goyal 已提交
125 126 127

    def test_check_grad_ignore_wt(self):
        self.check_grad(
H
hong 已提交
128 129 130 131 132
            ['X'],
            'Out',
            max_relative_error=0.06,
            no_grad_set=set('Filter'),
            check_dygraph=False)
S
Siddharth Goyal 已提交
133 134


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
def row_conv_foward_Tensor(x, wt):
    out = np.zeros_like(x)
    num_sequence = x.shape[0]
    timesteps = x.shape[1]
    context_length = wt.shape[0]
    for i in range(num_sequence):
        cur_in = x[i:i + 1, :][0]
        cur_out = out[i:i + 1, :][0]
        for j in range(timesteps):
            for k in range(context_length):
                if j + k >= timesteps:
                    continue
                cur_out[j, :] += cur_in[j + k, :] * wt[k, :]
    return out


class TestRowOpWithTensorInput(OpTest):
    def setUp(self):
        self.op_type = "row_conv"
        length = [3, 2, 4]
        B = 2
        T = sum(length)
        D = 16
        context_length = 2

        x = np.random.random((B, T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': x, 'Filter': wt}

        out = row_conv_foward_Tensor(x, wt)
        self.outputs = {'Out': out}

    def test_check_output(self):
H
hong 已提交
168
        self.check_output(check_dygraph=False)
169 170 171

    def test_check_grad_ignore_x(self):
        self.check_grad(
H
hong 已提交
172 173 174 175 176
            ['Filter'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set('X'),
            check_dygraph=False)
177 178

    def test_check_grad_normal(self):
H
hong 已提交
179 180 181 182 183
        self.check_grad(
            ['X', 'Filter'],
            'Out',
            max_relative_error=0.05,
            check_dygraph=False)
184 185 186

    def test_check_grad_ignore_wt(self):
        self.check_grad(
H
hong 已提交
187 188 189 190 191
            ['X'],
            'Out',
            max_relative_error=0.05,
            no_grad_set=set('Filter'),
            check_dygraph=False)
192 193


S
Siddharth Goyal 已提交
194 195
if __name__ == '__main__':
    unittest.main()