ExpandConvBaseLayer.cpp 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "ExpandConvBaseLayer.h"

17 18 19
#include "paddle/utils/Logging.h"
namespace paddle {

20
bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
21
                               const ParameterMap &parameterMap) {
22 23 24
  /* Initialize the basic convolutional parent class */
  ConvBaseLayer::init(layerMap, parameterMap);

C
chengduoZH 已提交
25
  int index = 0;
26 27 28 29 30
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();

C
chengduoZH 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    // create a new weight
    size_t height, width;
    height = filterPixels_[index] * filterChannels_[index];
    width = (!isDeconv_) ? numFilters_ : channels_[index];
    CHECK_EQ(parameters_[index]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[index]);
    weights_.emplace_back(w);
    index++;
  }
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
    }
  }
50 51
  getOutputSize();

52 53 54
  return true;
}

55 56 57 58 59 60
size_t ExpandConvBaseLayer::getOutputSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  size_t layerSize = ConvBaseLayer::calOutputSize();
  return layerSize;
}

61
void ExpandConvBaseLayer::addSharedBias() {
62
  size_t mapW = getOutputSize() / numFilters_;
63 64 65 66 67 68 69 70 71 72
  size_t mapH = getOutputValue()->getElementCnt() / mapW;
  MatrixPtr out =
      Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  out->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);

73 74 75 76 77
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
78 79 80 81 82 83 84 85 86
  transOutValue_->addBias(*bias, 1.0f);

  transOutValue_->reshape(mapW, mapH);
  transOutValue_->transpose(out, false);  // false means no memory allocation

  out->clear();
  bias->clear();
}

87
void ExpandConvBaseLayer::addUnsharedBias() {
88
  MatrixPtr outValue = getOutputValue();
89 90 91 92 93
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
94 95 96
  outValue->addBias(*bias, 1.0f);
}

97
void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
98
  size_t mapW = getOutputSize() / numFilters_;
99 100 101 102 103 104 105 106 107 108 109
  size_t mapH = v->getElementCnt() / mapW;
  MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  vTmp->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);
  biases->collectBias(*transOutValue_, 1.0f);
}

110
void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
111 112 113 114 115
  MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
                                    1,
                                    biases_->getWGrad()->getElementCnt(),
                                    false,
                                    useGpu_);
116 117 118 119 120 121 122 123 124
  if (sharedBiases_) {
    bpropSharedBias(biases, v);
  } else {
    biases->collectBias(*v, 1.0f);
  }
  biases->clear();
}

}  // namespace paddle