Im2Col.h 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include "TensorShape.h"
#include "TensorType.h"
H
hedaoyuan 已提交
19
#include "neon/neon_util.h"
20

21 22 23 24 25 26 27 28 29 30
namespace paddle {

/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
enum ColFormat { kCFO = 0, kOCF = 1 };

/*
 * \brief Converts the image data of three dimensions(CHW) into a colData of
 *        five dimensions in the Im2ColFunctor calculation,
 *        And in the Col2ImFunctor calculation, it is reversed.
 *
31 32 33 34 35
 * \param imData   Image data.
 * \param imShape  The shape of imData,
 *                 [inputChannels, inputHeight, inputWidth].
 * \param colData  Column data.
 * \param colShape The shape of colData.
36 37 38 39 40 41 42 43 44 45
 *
 * If the template argument Format is kCFO, the shape of colData is:
 * [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
 * So, it is easy to reshape into a convolution matrix for convolution
 * calculation based on matrix multiplication.
 * The shape of convolution matrix is [height, width], where the height is equal
 * inputChannels * filterHeight * filterWidth, and the width is equal
 * outputHeight * outputWidth.
 *
 * Reshape:
46
 *     shape of colData           shape of convolution matrix
47 48
 *     [inputChannels,
 *      filterHeight,
49
 *      filterWidth,      ======>      [height, width]
50 51 52 53 54 55 56 57 58 59 60
 *      outputHeight,
 *      outputWidth]
 *
 * If the template argument Format is kOCF, the shape of colData is:
 * [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
 * So, it is easy to reshape into a sequence matrix for rnn calculation.
 * The shape of sequence matrix is [seqLength, stepSize], where the seqLength
 * is equal outputHeight * outputWidth, and the stepSize is equal
 * inputChannels * filterHeight * filterWidth.
 *
 * Reshape:
61
 *     shape of colData             shape of sequence matrix
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 *     [outputHeight,
 *      outputWidth,
 *      inputChannels,    ======>    [seqLength, stepSize]
 *      filterHeight,
 *      filterWidth]
 *
 * \note The caller needs to ensure that imShape.inputChannels is equal to
 *       colShape.inputChannels.
 */
template <ColFormat Format, DeviceType Device, class T>
class Im2ColFunctor {
public:
  void operator()(const T* imData,
                  const TensorShape& imShape,
                  T* colData,
                  const TensorShape& colShape,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth);
};

template <ColFormat Format, DeviceType Device, class T>
class Col2ImFunctor {
public:
  void operator()(T* imData,
                  const TensorShape& imShape,
                  const T* colData,
                  const TensorShape& colShape,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth);
};

H
hedaoyuan 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
template <class T>
struct Padding {
  static void run(const T* src,
                  T* dest,
                  int channels,
                  int inputHeight,
                  int inputWidth,
                  int paddingHeight,
                  int paddingWidth) {
    const int destWidth = inputWidth + 2 * paddingWidth;
    for (int c = 0; c < channels; c++) {
      if (paddingHeight > 0) {
        memset(dest, 0, destWidth * paddingHeight * sizeof(T));
        dest += destWidth * paddingHeight;
      }

      for (int i = 0; i < inputHeight; i++) {
        // padding head
        for (int j = 0; j < paddingWidth; j++) {
          *dest++ = T(0);
        }

        memcpy(dest, src, inputWidth * sizeof(T));
        dest += inputWidth;
        src += inputWidth;

        // padding tail
        for (int j = 0; j < paddingWidth; j++) {
          *dest++ = T(0);
        }
      }

      if (paddingHeight > 0) {
        memset(dest, 0, destWidth * paddingHeight * sizeof(T));
        dest += destWidth * paddingHeight;
      }
    }
  }
};

#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <>
struct Padding<float> {
  static void run(const float* src,
                  float* dest,
                  int channels,
                  int inputHeight,
                  int inputWidth,
                  int paddingHeight,
                  int paddingWidth) {
    const int destWidth = inputWidth + 2 * paddingWidth;
    for (int c = 0; c < channels; c++) {
      if (paddingHeight > 0) {
        memset(dest, 0, destWidth * paddingHeight * sizeof(float));
        dest += destWidth * paddingHeight;
      }

      for (int i = 0; i < inputHeight; i++) {
        // padding head
        for (int j = 0; j < paddingWidth; j++) {
          *dest++ = float(0);
        }

        int step = inputWidth >> 2;
        int remain = inputWidth & 3;
        for (int s = 0; s < step; s++) {
          float32x4_t s0 = vld1q_f32(src);
          vst1q_f32(dest, s0);
          src += 4;
          dest += 4;
        }
        for (int r = 0; r < remain; r++) {
          *dest++ = *src++;
        }

        // padding tail
        for (int j = 0; j < paddingWidth; j++) {
          *dest++ = float(0);
        }
      }

      if (paddingHeight > 0) {
        memset(dest, 0, destWidth * paddingHeight * sizeof(float));
        dest += destWidth * paddingHeight;
      }
    }
  }
};

#endif

188
}  // namespace paddle