auto_parallel_amp.py 34.7 KB
Newer Older
J
JZ-LIANG 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
J
JZ-LIANG 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
J
JZ-LIANG 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
J
JZ-LIANG 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.framework import core
from paddle.fluid import unique_name
from .pass_base import PassBase, register_pass
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
from paddle.distributed.auto_parallel.utils import get_loss_op, set_var_dist_attr
from paddle.distributed.auto_parallel.utils import naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from paddle.distributed.auto_parallel.process_group import get_world_process_group
from paddle.fluid.contrib.mixed_precision.fp16_utils import AutoMixedPrecisionLists
from paddle.fluid.contrib.mixed_precision.fp16_utils import _keep_fp32_input, _keep_fp32_output, find_op_index
from paddle.fluid.contrib.mixed_precision.fp16_utils import _valid_types, find_true_post_op, find_true_prev_op
from paddle.fluid.contrib.mixed_precision.fp16_utils import _is_in_black_varnames, _dtype_to_str, _rename_arg
from paddle.distributed.auto_parallel.dist_attribute import OperatorDistributedAttribute
29

Z
zhaoyingli 已提交
30
world_process_group = get_world_process_group()
J
JZ-LIANG 已提交
31 32 33


class AMPState(object):
34

J
JZ-LIANG 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, block):
        self._block = block
        self._op_fp16_dict = {
        }  # op_id --> True/False. 'True' means that the current op is in fp16 mode.
        self._var_name_dict = {}  # fwd_op_id --> {old_name: cast_name}

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

    def _build_stats(self, amp_lists, dist_context):
        ops = self._block.ops
        dist_op_context = dist_context.dist_op_context
        for op in ops:
            if int(op.attr('op_role')) == int(OpRole.Forward):
                self._mark_black_white_ops(amp_lists)
            elif int(op.attr('op_role')) == int(OpRole.Backward):
51 52 53
                if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
                    fwd_op_id = dist_op_context.grad_op_id_to_op_id[
                        op.desc.original_id()]
J
JZ-LIANG 已提交
54
                    if self._is_fp16_op(fwd_op_id) == True:
55
                        self._op_fp16_dict[op.desc.original_id()] = True
J
JZ-LIANG 已提交
56
                    elif self._is_fp16_op(fwd_op_id) == False:
57
                        self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
            elif int(op.attr('op_role')) == int(OpRole.Optimize):
                break

    def _mark_black_white_ops(self, amp_lists):
        """
        this function is modified from paddle.fluid.contrib.mixed_precision
        """
        self._block._sync_with_cpp()
        ops = self._block.ops

        for op in ops:
            if int(op.attr('op_role')) == int(OpRole.Backward):
                break
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
            if amp_lists.black_varnames is not None and _is_in_black_varnames(
                    op, amp_lists):
75
                self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
76 77
                continue
            if op.type in amp_lists.black_list:
78
                self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
79
            elif op.type in amp_lists.white_list:
80
                self._op_fp16_dict[op.desc.original_id()] = True
J
JZ-LIANG 已提交
81 82 83 84 85 86 87 88 89 90 91 92
            elif op.type in amp_lists.gray_list:
                is_black_op = False
                is_white_op = False
                for in_name in op.input_names:
                    # if this op has inputs
                    if in_name:
                        for in_var_name in op.input(in_name):
                            in_var = self._block.var(in_var_name)
                            # this in_var isn't the output of other op
                            if in_var.op is None:
                                continue
                            elif in_var.op is op:
93 94
                                prev_op = find_true_prev_op(
                                    ops, op, in_var_name)
J
JZ-LIANG 已提交
95 96 97 98 99
                                if prev_op is None:
                                    continue
                            else:
                                prev_op = in_var.op
                            # if it's one of inputs
100
                            if self._is_fp16_op(prev_op.desc.original_id()) == False or \
J
JZ-LIANG 已提交
101 102
                                    prev_op.type in amp_lists.black_list:
                                is_black_op = True
103
                            elif self._is_fp16_op(prev_op.desc.original_id()) == True or \
J
JZ-LIANG 已提交
104 105 106
                                    prev_op.type in amp_lists.white_list:
                                is_white_op = True
                if is_black_op:
107
                    self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
108
                elif is_white_op:
109
                    self._op_fp16_dict[op.desc.original_id()] = True
J
JZ-LIANG 已提交
110 111 112 113 114
                else:
                    pass
            else:
                # For numerical safe, we apply fp32 computation on ops that
                # are not determined which list they should stay.
115
                self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
116 117 118 119 120 121 122 123 124

    def cast_forward_program(self, dist_context):
        ops = self._block.ops
        idx = 0
        while idx < len(ops):
            op = ops[idx]
            num_cast_ops = 0
            if int(op.attr('op_role')) == int(OpRole.Backward):
                break
125
            if self._is_fp16_op(op.desc.original_id()) == False:
J
JZ-LIANG 已提交
126 127 128
                num_cast_ops = self._insert_cast_op_forward(
                    op, idx, core.VarDesc.VarType.FP16,
                    core.VarDesc.VarType.FP32, dist_context)
129
            elif self._is_fp16_op(op.desc.original_id()) == True:
J
JZ-LIANG 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                num_cast_ops = self._insert_cast_op_forward(
                    op, idx, core.VarDesc.VarType.FP32,
                    core.VarDesc.VarType.FP16, dist_context)
            else:
                pass
            idx += num_cast_ops + 1
        self._block._sync_with_cpp()

    def _insert_cast_op_forward(self, op, idx, src_dtype, dst_dtype,
                                dist_context):
        """
        only for forward cast
        modified from paddle.fluid.contrib.mixed_precision
        """
        num_cast_ops = 0
145
        var_name_dict = {}
J
JZ-LIANG 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        for in_name in op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    op, in_name):
                continue
            for in_var_name in op.input(in_name):
                in_var = self._block._find_var_recursive(in_var_name)
                if in_var.type not in _valid_types or in_var.dtype == dst_dtype:
                    continue
                if in_var.dtype == src_dtype:
                    cast_name = in_var.name + '.cast_' + _dtype_to_str(
                        dst_dtype)
                    out_var = self._block.vars.get(cast_name)
                    var_name_dict[in_var.name] = cast_name
                    consume_op_attr = dist_context.get_op_dist_attr_for_program(
                        op)
                    assert consume_op_attr is not None
                    if out_var is None or out_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var.name)
                        assert in_var_dist_attr is not None
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping
170 171
                        consume_op_attr.set_input_dist_attr(
                            cast_name, in_var_dist_attr)
J
JZ-LIANG 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

                        out_var = self._block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
                            stop_gradient=in_var.stop_gradient)
                        set_var_dist_attr(dist_context, out_var, ref_mapping,
                                          ref_mesh)

                        cast_op = self._block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": out_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": out_var.dtype,
                            })
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                            cast_op, ref_mesh, ref_mapping, dist_context)
                        num_cast_ops += 1
                    else:
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var.name)
196 197
                        consume_op_attr.set_input_dist_attr(
                            cast_name, in_var_dist_attr)
J
JZ-LIANG 已提交
198 199 200 201
                    _rename_arg(op, in_var.name, cast_name)
                else:
                    if op.has_attr('in_dtype'):
                        op._set_attr('in_dtype', dst_dtype)
202
        self._var_name_dict[op.desc.original_id()] = var_name_dict
J
JZ-LIANG 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

        if src_dtype == core.VarDesc.VarType.FP32 and dst_dtype == core.VarDesc.VarType.FP16:
            for out_name in op.output_names:
                if _keep_fp32_output(op, out_name):
                    continue
                for out_var_name in op.output(out_name):
                    out_var = self._block.var(out_var_name)
                    if out_var.type not in _valid_types:
                        continue
                    if out_var.dtype == core.VarDesc.VarType.FP32:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
                        if op.has_attr('out_dtype'):
                            op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
        return num_cast_ops

    def cast_backward_program(self, params_grads, dist_context):
        self._block._sync_with_cpp()
        ops = self._block.ops

        loss_op = get_loss_op(self._block)
        loss_op_index = find_op_index(self._block.desc, loss_op.desc)

        idx = loss_op_index + 1
        while idx < len(ops):
            num_cast_ops = 0
            grad_op = ops[idx]
229
            grad_op_orig_id = grad_op.desc.original_id()
J
JZ-LIANG 已提交
230
            dist_op_context = dist_context.dist_op_context
231 232
            if grad_op_orig_id in dist_op_context.grad_op_id_to_op_id:
                if self._is_fp16_op(grad_op_orig_id) == False:  # fp32
J
JZ-LIANG 已提交
233 234 235
                    num_cast_ops = self._insert_cast_op_backward(
                        grad_op, idx, core.VarDesc.VarType.FP16,
                        core.VarDesc.VarType.FP32, dist_context)
236
                elif self._is_fp16_op(grad_op_orig_id) == True:  # fp16
J
JZ-LIANG 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                    num_cast_ops = self._insert_cast_op_backward(
                        grad_op, idx, core.VarDesc.VarType.FP32,
                        core.VarDesc.VarType.FP16, dist_context)
            elif grad_op.type == "sum":
                in_var_name = grad_op.desc.input_arg_names()[0]
                src_dtype = self._block.var(in_var_name).dtype
                for in_var_name in grad_op.desc.input_arg_names():
                    assert src_dtype == self._block.var(in_var_name).dtype
                out_var_name = grad_op.desc.output_arg_names()[0]
                out_var = self._block.var(out_var_name)
                if out_var.dtype != src_dtype:
                    out_var.desc.set_dtype(src_dtype)
            elif int(grad_op.attr('op_role')) == 257:
                pass
            else:
                raise ValueError(
                    "'{}' op is not supported in the complete amp pass.".format(
                        grad_op.type))
            idx += num_cast_ops + 1

        self._block._sync_with_cpp()
        _update_backward_cast_ops(params_grads, dist_context)

    def _insert_cast_op_backward(self, grad_op, idx, src_dtype, dst_dtype,
                                 dist_context):
        """ only for backward cast """

        def _keep_fp32_input(op, in_name):
            op_type = op.type
            if op_type in ['layer_norm_grad']:
                return in_name not in {'X', 'Y@GRAD'}
            return False

        def _keep_fp32_output(op, out_name):
            op_type = op.type
            if op_type in ['layer_norm_grad']:
                return out_name != 'X@GRAD'
            return False

        num_cast_ops = 0
277
        original_id = grad_op.desc.original_id()
J
JZ-LIANG 已提交
278
        dist_op_context = dist_context.dist_op_context
279
        fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
J
JZ-LIANG 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

        for in_name in grad_op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    grad_op, in_name):
                for in_var_name in grad_op.input(in_name):
                    in_var = self._block._find_var_recursive(in_var_name)
                    assert in_var.dtype == core.VarDesc.VarType.FP32
                continue

            for in_var_name in grad_op.input(in_name):
                in_var = self._block._find_var_recursive(in_var_name)
                if in_var.dtype == src_dtype:
                    consume_op_attr = dist_context.get_op_dist_attr_for_program(
                        grad_op)
                    if in_var_name in self._var_name_dict[fwd_op_id]:
                        # NOTE: if in_var of consume grad_op has been casted before,
                        # it should be renamed and reset dist_attr.
                        cast_name = self._var_name_dict[fwd_op_id][in_var_name]
                        grad_op.desc._rename_input(in_var_name, cast_name)
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var_name)
301 302
                        consume_op_attr.set_input_dist_attr(
                            cast_name, in_var_dist_attr)
J
JZ-LIANG 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
                    else:
                        assert in_var.dtype == dst_dtype

        for out_name in grad_op.output_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_output(
                    grad_op, out_name):
                for out_var_name in grad_op.output(out_name):
                    out_var = self._block._find_var_recursive(out_var_name)
                    assert out_var.dtype == core.VarDesc.VarType.FP32
                continue

            for out_var_name in grad_op.output(out_name):
                out_var = self._block._find_var_recursive(out_var_name)
                out_var_name_prefix = out_var_name[:out_var_name.find("@")]
                fwd_var = self._block._find_var_recursive(out_var_name_prefix)
                # NOTE: the out_var's dtype of consume grad_op should equal to the fwd_var's dtype
                if out_var.dtype != fwd_var.dtype:
                    out_var.desc.set_dtype(fwd_var.dtype)

                if out_var.dtype == src_dtype:
                    if out_var_name_prefix in self._var_name_dict[fwd_op_id]:
                        # NOTE: if out_var of consume grad_op has been casted before,
                        # it should be renamed and reset dist_attr, then we insert cast op to
                        # convert the cast_var to original dtype
                        consume_op_attr = dist_context.get_op_dist_attr_for_program(
                            grad_op)
                        fwd_cast_name = self._var_name_dict[fwd_op_id][
                            out_var_name_prefix]
                        cast_name = fwd_cast_name + "@GRAD"
                        cast_var = self._block.vars.get(cast_name)
                        if cast_var is None or cast_var.dtype != dst_dtype:
                            grad_op.desc._rename_output(out_var_name, cast_name)
                            out_var_dist_attr = consume_op_attr.get_output_dist_attr(
                                out_var_name)
                            ref_mesh = out_var_dist_attr.process_mesh
                            ref_mapping = out_var_dist_attr.dims_mapping
                            consume_op_attr.set_output_dist_attr(
                                cast_name, out_var_dist_attr)
                            assert ref_mapping is not None
                            cast_var = self._block.create_var(
                                name=cast_name,
                                shape=out_var.shape,
                                dtype=dst_dtype,
                                persistable=False,
                                stop_gradient=out_var.stop_gradient)
                            set_var_dist_attr(dist_context, cast_var,
                                              ref_mapping, ref_mesh)

                            cast_op = self._block._insert_op(
                                idx + 1,
                                type="cast",
                                inputs={"X": cast_var},
                                outputs={"Out": out_var},
                                attrs={
                                    "in_dtype": cast_var.dtype,
                                    "out_dtype": out_var.dtype,
                                    "op_role": OpRole.Backward
                                })
                            cast_op._remove_attr("op_role_var")
                            cast_op._remove_attr("op_namescope")
                            cast_op._remove_attr("with_quant_attr")
                            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                                cast_op, ref_mesh, ref_mapping, dist_context)
                            num_cast_ops += 1
                else:
                    assert out_var.dtype == dst_dtype

        return num_cast_ops


def _update_backward_cast_ops(params_grads, dist_context):
    """
    move param grad cast to the end of backward segment
    in order to enabel fp16 allreduce
    """
    # TODO filter optimize ops in future

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    for p, g in params_grads:
        op = g.op
        if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
386 387
            if int(op.attr('op_role')) == int(
                    OpRole.Backward) and op.has_attr('op_role_var'):
J
JZ-LIANG 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
                op._remove_attr("op_role_var")

            post_ops = find_true_post_op(main_block.ops, op, g.name)
            if post_ops:
                raise ValueError("The cast op {0}'s output should not be"
                                 "used by a non-optimize op, however, it"
                                 "is used by {1}".format(op, post_ops[0]))

            if op == main_block.ops[-1]:
                continue

            # add new op in the python and cpp at the same time
            new_op_desc = main_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
402 403 404 405 406 407
            new_op = paddle.fluid.framework.Operator(block=main_block,
                                                     desc=new_op_desc,
                                                     type=None,
                                                     inputs=None,
                                                     outputs=None,
                                                     attrs=None)
J
JZ-LIANG 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            main_block.ops.append(new_op)

            # dist attr
            param_dist_attr = dist_context.get_tensor_dist_attr_for_program(p)
            output_dist_attr = dist_context.get_tensor_dist_attr_for_program(
                main_block.var(op.output_arg_names[0]))
            assert param_dist_attr is not None
            assert output_dist_attr is not None
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                new_op, param_dist_attr.process_mesh,
                param_dist_attr.dims_mapping, dist_context)

            output_dist_attr.process_mesh = param_dist_attr.process_mesh
            output_dist_attr.dims_mapping = param_dist_attr.dims_mapping

            op_idx = find_op_index(main_block.desc, op.desc)
            if op_idx == -1:
                raise ValueError("The op {0} is not in program".format(op))
            main_block._remove_op(op_idx, sync=False)

    main_block._sync_with_cpp()


def _check_and_update_gradient(params_grads, loss_scaling, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    grads = [g for _, g in params_grads]
    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
        check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                 'check_finite_and_unscale')

    found_inf = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ['find_infinite_scale', 'tmp'])),
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=False)
Z
zhaoyingli 已提交
450
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)
J
JZ-LIANG 已提交
451 452 453

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
454
    attrs = {'op_role': OpRole.Optimize}
455 456 457 458
    new_op = main_block.append_op(type='check_finite_and_unscale',
                                  inputs=inputs,
                                  outputs=outputs,
                                  attrs=attrs)
J
JZ-LIANG 已提交
459 460

    new_op_dist_attr = OperatorDistributedAttribute()
Z
zhaoyingli 已提交
461 462 463 464
    new_op_dist_attr.process_mesh = world_process_group.ranks
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
J
JZ-LIANG 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
        new_op_dist_attr.set_input_dims_mapping(g.name,
                                                g_dist_attr.dims_mapping)
        new_op_dist_attr.set_output_dims_mapping(g.name,
                                                 g_dist_attr.dims_mapping)
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


@register_pass("auto_parallel_amp")
class AMPPass(PassBase):
478

J
JZ-LIANG 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491
    def __init__(self):
        super(AMPPass, self).__init__()
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("custom_white_list", None)
        self.set_attr("custom_black_list", None)
        self.set_attr("custom_black_varnames", None)
        self.set_attr("init_loss_scaling", 32768.0)
        self.set_attr("incr_every_n_steps", 1000)
        self.set_attr("decr_every_n_nan_or_inf", 2)
        self.set_attr("incr_ratio", 2.0)
        self.set_attr("decr_ratio", 0.8)
        self.set_attr("use_dynamic_loss_scaling", False)
492
        self.set_attr("input_data", [])
J
JZ-LIANG 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        self.set_attr("params_grads", [])
        self._loss_scaling = None
        self._num_good_steps = None
        self._num_bad_steps = None

    def _check_self(self):
        if self.get_attr("init_loss_scaling") < 0:
            return False
        if self.get_attr("incr_every_n_steps") < 0:
            return False
        if self.get_attr("decr_every_n_nan_or_inf") < 0:
            return False
        if self.get_attr("incr_ratio") < 0:
            return False
        if self.get_attr("decr_ratio") < 0:
            return False
        if self.get_attr("dist_context") is None:
            return False
        return True

    def _check_conflict(self, other_pass):

        return True

517 518
    # NOTE: why AMPBackwardPass can override apply_single_impl instead of
    # apply_impl? AMP is an optimization pass for serial program,
J
JZ-LIANG 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")

        amp_lists = AutoMixedPrecisionLists(
            set(self.get_attr("custom_white_list")),
            set(self.get_attr("custom_black_list")),
            set(self.get_attr("custom_black_varnames")))

        amp_state = AMPState(main_program.global_block())
        amp_state._build_stats(amp_lists, self.dist_context)

        with paddle.static.program_guard(main_program, startup_program):
            amp_state.cast_forward_program(self.dist_context)
            amp_state.cast_backward_program(params_grads, self.dist_context)
535
            # TODO (JZ-LIANG)support cast forward program only when inference
J
JZ-LIANG 已提交
536 537 538
            self._init_amp_var()
            self._scale_loss()

539 540
            if self.get_attr("use_dynamic_loss_scaling"
                             ) or self.get_attr("init_loss_scaling") != 1.0:
J
JZ-LIANG 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554
                grads, found_inf = _check_and_update_gradient(
                    params_grads, self._loss_scaling, self.dist_context)

            if self.get_attr("use_dynamic_loss_scaling"):
                self._update_loss_scaling(grads, found_inf)

    def _init_amp_var(self):
        self._loss_scaling = paddle.static.create_global_var(
            name=unique_name.generate("loss_scaling"),
            shape=[1],
            value=self.get_attr("init_loss_scaling"),
            dtype='float32',
            persistable=True)
        set_var_dist_attr(self.dist_context, self._loss_scaling, [-1],
Z
zhaoyingli 已提交
555
                          world_process_group.ranks)
J
JZ-LIANG 已提交
556 557 558 559 560 561 562 563 564

        if self.get_attr("use_dynamic_loss_scaling"):
            self._num_good_steps = paddle.static.create_global_var(
                name=unique_name.generate("num_good_steps"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)
            set_var_dist_attr(self.dist_context, self._num_good_steps, [-1],
Z
zhaoyingli 已提交
565
                              world_process_group.ranks)
J
JZ-LIANG 已提交
566 567 568 569 570 571 572 573

            self._num_bad_steps = paddle.static.create_global_var(
                name=unique_name.generate("num_bad_steps"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)
            set_var_dist_attr(self.dist_context, self._num_bad_steps, [-1],
Z
zhaoyingli 已提交
574
                              world_process_group.ranks)
J
JZ-LIANG 已提交
575 576 577 578 579

    def _scale_loss(self):

        main_block = paddle.static.default_main_program().global_block()
        main_block._sync_with_cpp()
580 581
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()

J
JZ-LIANG 已提交
582 583 584 585 586 587 588
        loss = self.get_attr("loss")
        assert loss is not None
        loss_op = loss.op
        loss_op_dist_attr = self.dist_context.get_op_dist_attr_for_program(
            loss_op)

        if loss.dtype != core.VarDesc.VarType.FP32:
589
            # cast loss here will change the effective loss tensor for the computation graph
590 591
            # and therefore will effect all following passes whose logic is based on the loss tensor(Recompute & Gradient Merge),
            # so we it is not allowed by now. fixed it in future.
592 593 594 595 596 597 598 599 600
            raise NotImplementedError(
                "Loss's generator op is not support in FP16 in Auto Parallel by now, please put that op into your black-list."
            )

            tmp_name = unique_name.generate(loss.name + ".cast_fp32")
            cast_loss = main_block.create_var(name=tmp_name, dtype=dtype)
            loss_dist_attr = self.dist_context.get_tensor_dist_attr_for_program(
                loss)
            ref_mesh = loss_op_dist_attr.process_mesh
601 602
            self.dist_context.set_tensor_dist_attr_for_program(
                cast_loss, loss_dist_attr)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

            loss_op_idx = find_op_index(main_block.desc, loss_op.desc)
            cast_op = main_block._insert_op(
                loss_op_idx + 1,
                type='cast',
                inputs={'X': [loss]},
                outputs={'Out': [cast_loss]},
                attrs={
                    "in_dtype": loss.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                    'op_role': loss_op.all_attrs()[OP_ROLE_KEY],
                })

            loss_op._set_attr(OP_ROLE_KEY,
                              core.op_proto_and_checker_maker.OpRole.Forward)
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                cast_op, ref_mesh, [-1], self.dist_context)
J
JZ-LIANG 已提交
620 621
            loss = loss.astype('float32')

622 623
        if self.get_attr("use_dynamic_loss_scaling"
                         ) or self.get_attr("init_loss_scaling") != 1.0:
J
JZ-LIANG 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

            loss_op_idx = find_op_index(main_block.desc, loss_op.desc)

            # forward
            ref_mesh = loss_op_dist_attr.process_mesh
            self._scaled_loss = main_block.create_var(
                name=unique_name.generate("scaled_loss"),
                shape=loss.shape,
                dtype=loss.dtype,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, self._scaled_loss, [-1],
                              ref_mesh)

            elementwise_mul_op = main_block._insert_op(
                loss_op_idx + 1,
                type='elementwise_mul',
640 641 642 643
                inputs={
                    'X': [loss],
                    'Y': [self._loss_scaling]
                },
J
JZ-LIANG 已提交
644
                outputs={'Out': [self._scaled_loss]},
645 646 647
                attrs={
                    'op_role': loss_op.all_attrs()[OP_ROLE_KEY],
                })
J
JZ-LIANG 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
            loss_op._set_attr(OP_ROLE_KEY,
                              core.op_proto_and_checker_maker.OpRole.Forward)
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                elementwise_mul_op, ref_mesh, [-1], self.dist_context)

            # backward
            first_backward_op = main_block.ops[loss_op_idx + 2]
            assert first_backward_op.type == "fill_constant" and int(
                first_backward_op.all_attrs()[OP_ROLE_KEY]) == 257
            self._scaled_loss_grad = main_block.create_var(
                name=unique_name.generate("scaled_loss") + "@GRAD",
                shape=loss.shape,
                dtype=loss.dtype,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, self._scaled_loss_grad, [-1],
                              ref_mesh)
            pre_grad_name = first_backward_op.output_arg_names[0]
            first_backward_op._rename_output(pre_grad_name,
                                             self._scaled_loss_grad.name)
            # FIXME(JZ-LIANG) a trick to insert backward op
            main_block._sync_with_cpp()
            elementwise_mul_grad_op_desc = main_block.desc._insert_op(
                loss_op_idx + 3)
            elementwise_mul_grad_op_desc.set_type("elementwise_mul_grad")
            elementwise_mul_grad_op_desc.set_input(
                'Out@GRAD', [self._scaled_loss_grad.name])
            elementwise_mul_grad_op_desc.set_input('X', [loss.name])
            elementwise_mul_grad_op_desc.set_input('Y',
                                                   [self._loss_scaling.name])
            elementwise_mul_grad_op_desc.set_output('X@GRAD', [pre_grad_name])
            elementwise_mul_grad_op_desc.set_output('Y@GRAD', [])
            elementwise_mul_grad_op_desc._set_attr(
                OP_ROLE_KEY, core.op_proto_and_checker_maker.OpRole.Backward)
            elementwise_mul_grad_op_desc._set_attr('axis', -1)
            elementwise_mul_grad_op = paddle.fluid.framework.Operator(
                main_block, elementwise_mul_grad_op_desc)
            main_block.ops.insert(loss_op_idx + 3, elementwise_mul_grad_op)
            main_block._sync_with_cpp()
            elementwise_mul_grad_op = main_block.ops[loss_op_idx + 3]
            assert elementwise_mul_grad_op.type == "elementwise_mul_grad"
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                elementwise_mul_grad_op, ref_mesh, [-1], self.dist_context)

        else:
            self._scaled_loss = loss

        main_block._sync_with_cpp()

    def _update_loss_scaling(self, grads, found_inf):

        main_block = paddle.static.default_main_program().global_block()
        main_block._sync_with_cpp()

        check_variable_and_dtype(self._loss_scaling, "prev_loss_scaling",
                                 ['float32', 'float64'], "update_loss_scaling")
        check_type(grads, 'x', (tuple, list), 'update_loss_scaling')
        for e in grads:
            check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                     'update_loss_scaling')
707 708 709 710 711
            if e.dtype == core.VarDesc.VarType.FP16:
                assert self._loss_scaling.dtype == core.VarDesc.VarType.FP32, \
                    "The dtype of prev_loss_scaling should be float32 when the dtype of x is float16."
            else:
                assert self._loss_scaling.dtype == e.dtype, "The dtype of prev_loss_scaling should be equal to the dtype of x."
J
JZ-LIANG 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

        inputs = {
            'X': grads,
            'FoundInfinite': found_inf,
            'PrevLossScaling': self._loss_scaling,
            'InGoodSteps': self._num_good_steps,
            'InBadSteps': self._num_bad_steps
        }

        outputs = {
            'Out': grads,
            'LossScaling': self._loss_scaling,
            'OutGoodSteps': self._num_good_steps,
            'OutBadSteps': self._num_bad_steps
        }

        attrs = {
            'incr_every_n_steps': self.get_attr("incr_every_n_steps"),
            'decr_every_n_nan_or_inf': self.get_attr("decr_every_n_nan_or_inf"),
            'incr_ratio': self.get_attr("incr_ratio"),
            'decr_ratio': self.get_attr("decr_ratio"),
            'stop_update': self.get_attr("stop_update"),
734
            'op_role': OpRole.Optimize
J
JZ-LIANG 已提交
735 736
        }

737 738 739 740
        new_op = main_block.append_op(type='update_loss_scaling',
                                      inputs=inputs,
                                      outputs=outputs,
                                      attrs=attrs)
J
JZ-LIANG 已提交
741 742

        new_op_dist_attr = OperatorDistributedAttribute()
Z
zhaoyingli 已提交
743 744 745 746
        new_op_dist_attr.process_mesh = world_process_group.ranks
        new_op_dist_attr.impl_idx = 0
        if len(world_process_group.ranks) > 1:
            new_op_dist_attr.impl_type = "update_loss_scaling"
J
JZ-LIANG 已提交
747 748 749 750 751 752 753 754 755 756
        for g in grads:
            g_dist_attr = self.dist_context.get_tensor_dist_attr_for_program(g)
            assert g_dist_attr is not None
            new_op_dist_attr.set_input_dims_mapping(g.name,
                                                    g_dist_attr.dims_mapping)
            new_op_dist_attr.set_output_dims_mapping(g.name,
                                                     g_dist_attr.dims_mapping)
        self.dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)

        main_block._sync_with_cpp()