roi_align_op.cc 8.8 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/roi_align_op.h"
S
sneaxiy 已提交
13
#include <memory>
J
jerrywgz 已提交
14 15 16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class ROIAlignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
26 27 28 29 30 31 32 33 34
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound("Input(X) of ROIAlignOp "
                                                 "is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("ROIs"), true,
                      platform::errors::NotFound("Input(ROIs) of ROIAlignOp "
                                                 "is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::NotFound("Output(Out) of ROIAlignOp "
                                                 "is not found."));
J
jerrywgz 已提交
35 36 37
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

38 39 40 41 42 43 44 45 46 47 48 49
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 4,
        platform::errors::InvalidArgument(
            "The format of Input(X) in"
            "RoIAlignOp is NCHW. And the rank of input must be 4. "
            "But received rank = %d",
            input_dims.size()));
    PADDLE_ENFORCE_EQ(rois_dims.size(), 2, platform::errors::InvalidArgument(
                                               "The rank of Input(ROIs) "
                                               "in RoIAlignOp should be 2. "
                                               "But the rank of RoIs is %d",
                                               rois_dims.size()));
50
    if (ctx->IsRuntime()) {
51 52 53 54 55 56
      PADDLE_ENFORCE_EQ(rois_dims[1], 4,
                        platform::errors::InvalidArgument(
                            "The second dimension "
                            "of Input(ROIs) should be 4. But received the "
                            "dimension = %d",
                            rois_dims[1]));
57
    }
J
jerrywgz 已提交
58 59 60 61 62
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE_GT(pooled_height, 0,
63 64 65 66 67
                      platform::errors::InvalidArgument(
                          "The pooled output "
                          "height must greater than 0. But received "
                          "pooled_height = %d",
                          pooled_height));
J
jerrywgz 已提交
68
    PADDLE_ENFORCE_GT(pooled_width, 0,
69 70 71 72 73
                      platform::errors::InvalidArgument(
                          "The pooled output "
                          "width must greater than 0. But received "
                          "pooled_width = %d",
                          pooled_width));
J
jerrywgz 已提交
74
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
75 76 77 78
                      platform::errors::InvalidArgument(
                          "The spatial scale "
                          "must greater than 0 But received spatial_scale = %f",
                          spatial_scale));
J
jerrywgz 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] = input_dims[1];
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;

    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
92 93 94
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
J
jerrywgz 已提交
95 96 97 98 99 100 101 102
  }
};

class ROIAlignGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
103 104 105 106 107 108 109
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("The GRAD@Out of ROIAlignGradOp "
                                   "is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutputs(framework::GradVarName("X")), true,
                      platform::errors::NotFound("The GRAD@X of ROIAlignGradOp "
                                                 "is not found."));
J
jerrywgz 已提交
110 111 112 113 114 115
    ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
116 117 118
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "ROIs"),
        ctx.device_context());
J
jerrywgz 已提交
119 120 121 122 123 124 125 126
  }
};

class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
W
wangguanzhong 已提交
127
             "The input of ROIAlignOp. The data type is float32 or float64."
J
jerrywgz 已提交
128 129 130 131 132 133 134 135
             "The format of input tensor is NCHW. Where N is batch size, "
             "C is the number of input channels, "
             "H is the height of the feature, and "
             "W is the width of the feature.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4)"
W
wopeizl 已提交
136
             "given as [[x1, y1, x2, y2], ...]. "
J
jerrywgz 已提交
137 138 139 140 141
             "(x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates.");
    AddOutput("Out",
              "(Tensor), "
              "The output of ROIAlignOp is a 4-D tensor with shape "
W
wangguanzhong 已提交
142 143
              "(num_rois, channels, pooled_h, pooled_w). The data type is "
              "float32 or float64.");
J
jerrywgz 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "The pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "The pooled output width.")
        .SetDefault(1);
    AddAttr<int>("sampling_ratio",
                 "(int,default -1),"
                 "number of sampling points in the interpolation grid"
                 "If <=0, then grid points are adaptive to roi_width "
                 "and pooled_w, likewise for height")
        .SetDefault(-1);
    AddComment(R"DOC(
J
jerrywgz 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178
**RoIAlign Operator**

Region of interest align (also known as RoI align) is to perform
bilinear interpolation on inputs of nonuniform sizes to obtain 
fixed-size feature maps (e.g. 7*7)

Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height. Location remains the origin
result.

In each ROI bin, the value of the four regularly sampled locations 
are computed directly through bilinear interpolation. The output is
the mean of four locations.
Thus avoid the misaligned problem.   
J
jerrywgz 已提交
179 180 181 182
    )DOC");
  }
};

H
hong 已提交
183 184
template <typename T>
class ROIAlignGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
185
 public:
H
hong 已提交
186
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
187 188

 protected:
189
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
190
    op->SetType("roi_align_grad");
H
hong 已提交
191 192 193 194 195
    op->SetInput("X", this->Input("X"));
    op->SetInput("ROIs", this->Input("ROIs"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
196 197 198
  }
};

Z
Zeng Jinle 已提交
199
DECLARE_NO_NEED_BUFFER_VARS_INFERER(RoiAlignGradNoNeedBufVarsInferer, "X");
200

J
jerrywgz 已提交
201 202 203 204 205
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(roi_align, ops::ROIAlignOp, ops::ROIAlignOpMaker,
H
hong 已提交
206 207
                  ops::ROIAlignGradMaker<paddle::framework::OpDesc>,
                  ops::ROIAlignGradMaker<paddle::imperative::OpBase>);
208 209
REGISTER_OPERATOR(roi_align_grad, ops::ROIAlignGradOp,
                  ops::RoiAlignGradNoNeedBufVarsInferer);
J
jerrywgz 已提交
210 211 212 213 214 215 216 217
REGISTER_OP_CPU_KERNEL(
    roi_align,
    ops::CPUROIAlignOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUROIAlignOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    roi_align_grad,
    ops::CPUROIAlignGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUROIAlignGradOpKernel<paddle::platform::CPUDeviceContext, double>);