test_multiclass_nms_op.py 17.2 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15

from __future__ import print_function
16 17 18
import unittest
import numpy as np
import copy
19
from op_test import OpTest
X
xiaoting 已提交
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22 23


24 25 26 27 28 29 30 31
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
32
def iou(box_a, box_b, norm):
33 34 35 36 37 38 39 40 41 42 43 44
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

J
jerrywgz 已提交
45 46 47 48
    area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
                                                    (norm == False))
    area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
                                                    (norm == False))
49 50 51 52 53 54 55 56
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

J
jerrywgz 已提交
57 58
    inter_area = max(xb - xa + (norm == False),
                     0.0) * max(yb - ya + (norm == False), 0.0)
59 60 61 62 63 64

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


J
jerrywgz 已提交
65 66 67 68 69 70 71
def nms(boxes,
        scores,
        score_threshold,
        nms_threshold,
        top_k=200,
        normalized=True,
        eta=1.0):
72 73 74 75 76
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
77 78 79 80 81 82
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
83 84 85 86 87 88 89 90 91
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

92
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
93
    sorted_scores = all_scores[sorted_indices]
94
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
95
    if top_k > -1 and top_k < sorted_indices.shape[0]:
96 97 98 99 100 101 102 103 104 105 106
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
107
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
108
                keep = True if overlap <= adaptive_threshold else False
109 110 111 112 113 114 115 116 117 118
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
J
jerrywgz 已提交
119 120 121 122 123 124 125
                   nms_top_k, keep_top_k, normalized, shared):
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
126

127
    selected_indices = {}
128 129 130
    num_det = 0
    for c in range(class_num):
        if c == background: continue
J
jerrywgz 已提交
131 132 133 134 135 136
        if shared:
            indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                          nms_top_k, normalized)
        else:
            indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
                          nms_threshold, nms_top_k, normalized)
137
        selected_indices[c] = indices
138 139 140 141
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
142
        for c, indices in selected_indices.items():
143
            for idx in indices:
J
jerrywgz 已提交
144 145 146 147
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
148 149 150 151

        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True)
        sorted_score_index = sorted_score_index[:keep_top_k]
152 153 154 155
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
156
        for s, c, idx in sorted_score_index:
157
            selected_indices[c].append(idx)
J
jerrywgz 已提交
158 159 160
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
161
        num_det = keep_top_k
162

163
    return selected_indices, num_det
164 165


J
jerrywgz 已提交
166 167 168
def lod_multiclass_nms(boxes, scores, background, score_threshold,
                       nms_threshold, nms_top_k, keep_top_k, box_lod,
                       normalized):
169
    num_class = boxes.shape[1]
J
jerrywgz 已提交
170 171 172 173 174 175
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
        box = boxes[head:head + box_lod[0][n]]
        score = scores[head:head + box_lod[0][n]]
176
        offset = head
J
jerrywgz 已提交
177 178 179 180 181 182 183 184 185 186 187
        head = head + box_lod[0][n]
        nmsed_outs, nmsed_num = multiclass_nms(
            box,
            score,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=False)
188 189
        lod.append(nmsed_num)

J
jerrywgz 已提交
190 191
        if nmsed_num == 0:
            continue
192
        tmp_det_out = []
J
jerrywgz 已提交
193 194 195
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
196 197 198 199
                tmp_det_out.append([
                    c, score[idx][c], xmin, ymin, xmax, ymax,
                    offset * num_class + idx * num_class + c
                ])
200 201 202
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False)
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
203 204 205 206 207 208 209 210 211 212 213 214

    return det_outs, lod


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           nms_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True):
215
    batch_size = scores.shape[0]
216
    num_boxes = scores.shape[2]
217
    det_outs = []
218
    index_outs = []
219
    lod = []
220
    for n in range(batch_size):
J
jerrywgz 已提交
221 222 223 224 225 226 227 228 229 230
        nmsed_outs, nmsed_num = multiclass_nms(
            boxes[n],
            scores[n],
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=True)
231 232
        lod.append(nmsed_num)

J
jerrywgz 已提交
233 234
        if nmsed_num == 0:
            continue
235
        tmp_det_out = []
236
        for c, indices in nmsed_outs.items():
237
            for idx in indices:
238
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
239 240 241 242
                tmp_det_out.append([
                    c, scores[n][c][idx], xmin, ymin, xmax, ymax,
                    idx + n * num_boxes
                ])
243 244 245
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False)
        det_outs.extend(sorted_det_out)
246 247 248 249
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
250 251 252
    def set_argument(self):
        self.score_threshold = 0.01

253
    def setUp(self):
254
        self.set_argument()
255
        N = 7
256
        M = 1200
257 258 259 260 261 262
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
263
        score_threshold = self.score_threshold
264

D
dangqingqing 已提交
265 266 267 268 269 270
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

271 272 273
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
274

275 276 277 278 279 280 281
        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
282 283

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
284
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
285
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
286 287 288 289 290 291 292
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
293
            'normalized': True,
D
dangqingqing 已提交
294
        }
295 296 297 298 299

    def test_check_output(self):
        self.check_output()


300 301 302
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
303
        # In practical use, 0.0 < score_threshold < 1.0
304 305 306
        self.score_threshold = 2.0


J
jerrywgz 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
class TestMulticlassNMSLoDInput(OpTest):
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

334
        det_outs, lod = lod_multiclass_nms(
J
jerrywgz 已提交
335 336
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)
337 338 339
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
J
jerrywgz 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


360 361 362 363 364 365
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
366
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
367 368 369
        self.assertTrue(np.allclose(calc_output, expt_output))


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        index_outs = det_outs[:, -1:].astype('int') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

        det_outs, lod = lod_multiclass_nms(
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        index_outs = det_outs[:, -1:].astype('int') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
class TestMulticlassNMSError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

            boxes_data = fluid.data(
                name='bboxes', shape=[M, C, BOX_SIZE], dtype='float32')
            scores_data = fluid.data(
                name='scores', shape=[N, C, M], dtype='float32')

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


523 524
if __name__ == '__main__':
    unittest.main()