seq_expand_op.h 4.3 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/op_registry.h"
W
wanghaoshuang 已提交
18
#include "paddle/memory/memcpy.h"
W
wanghaoshuang 已提交
19
#include "unsupported/Eigen/CXX11/Tensor"
W
wanghaoshuang 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename Place, typename T>
class SeqExpandKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    const T* x_data = x->data<T>();
W
wanghaoshuang 已提交
33 34
    auto x_dims = x->dims();
    auto x_lod = x->lod();
W
wanghaoshuang 已提交
35

W
wanghaoshuang 已提交
36
    if (x_lod.size() == 0) {
W
wanghaoshuang 已提交
37
      framework::Vector<size_t> level;
W
wanghaoshuang 已提交
38 39
      for (int i = 0; i < x->dims()[0] + 1; ++i) {
        level.push_back(i);
W
wanghaoshuang 已提交
40
      }
W
wanghaoshuang 已提交
41 42 43
      x_lod.push_back(level);
    } else {
      x_lod.insert(x_lod.begin(), x_lod[0]);
W
wanghaoshuang 已提交
44
    }
W
wanghaoshuang 已提交
45 46

    size_t repeat = static_cast<size_t>(context.Attr<int>("repeat"));
W
wanghaoshuang 已提交
47
    framework::Vector<size_t> scales;
W
wanghaoshuang 已提交
48 49
    if (repeat != 0) {
      for (int i = 0; i < x_lod[0].size() - 1; ++i) {
W
wanghaoshuang 已提交
50
        scales.push_back(repeat);
W
wanghaoshuang 已提交
51
      }
W
wanghaoshuang 已提交
52 53 54 55
      std::vector<int64_t> dims = framework::vectorize(x->dims());
      dims[0] = dims[0] * repeat;
      auto out_dims = framework::make_ddim(dims);
      out->Resize(out_dims);
W
wanghaoshuang 已提交
56
    } else {
W
wanghaoshuang 已提交
57 58 59
      auto* y = context.Input<LoDTensor>("Y");
      auto y_lod = y->lod();
      for (int i = 0; i < y_lod[0].size() - 1; ++i) {
W
wanghaoshuang 已提交
60 61
        scales.push_back((y_lod[0][i + 1] - y_lod[0][i]) /
                         (x_lod[0][i + 1] - x_lod[0][i]));
W
wanghaoshuang 已提交
62
      }
W
wanghaoshuang 已提交
63
      out->Resize(y->dims());
W
wanghaoshuang 已提交
64
    }
W
wanghaoshuang 已提交
65 66

    framework::LoD out_lod;
W
wanghaoshuang 已提交
67
    auto level0 = framework::expand_lod(x_lod[0], x_lod[0], scales, false);
W
wanghaoshuang 已提交
68 69
    out_lod.push_back(level0);
    for (int i = 1; i < x_lod.size(); ++i) {
W
wanghaoshuang 已提交
70
      out_lod.push_back(
W
wanghaoshuang 已提交
71
          framework::expand_lod(x_lod[i], x_lod[0], scales, true));
W
wanghaoshuang 已提交
72 73 74 75
    }

    size_t element_len = framework::product(x_dims) / x_dims[0];
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
76 77

    // copy data
W
wanghaoshuang 已提交
78
    Place place = boost::get<Place>(context.GetPlace());
W
wanghaoshuang 已提交
79
    size_t count = 0;
W
wanghaoshuang 已提交
80
    for (size_t i = 0; i < scales.size(); ++i) {
W
wanghaoshuang 已提交
81
      count = element_len * (x_lod[0][i + 1] - x_lod[0][i]);
W
wanghaoshuang 已提交
82
      for (size_t j = 0; j < scales[i]; ++j) {
W
wanghaoshuang 已提交
83 84 85 86 87 88
        memory::Copy(place, out_data, place, x_data, sizeof(T) * count);
        out_data += count;
      }
      x_data += count;
    }

W
wanghaoshuang 已提交
89
    out->set_lod(out_lod);
W
wanghaoshuang 已提交
90 91 92 93 94 95 96
  }
};

template <typename Place, typename T>
class SeqExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
97 98 99
    auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Input<LoDTensor>("Out");
W
wanghaoshuang 已提交
100
    auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    auto out_lod = out->lod();
    d_x->set_lod(x->lod());
    const T* d_out_data = d_out->data<T>();
    auto d_out_dims = d_out->dims();
    T* d_x_data = d_x->mutable_data<T>(context.GetPlace());
    size_t element_len = framework::product(d_out_dims) / d_out_dims[0];
    for (size_t i = 0; i < out->NumElements(); ++i) {
      size_t ele_count = out_lod[0][i + 1] - out_lod[0][i];
      size_t repeat = out->NumElements(0, i);
      Eigen::TensorMap<Eigen::Tensor<const T, 2>> d_out_t(
          d_out_data, static_cast<int>(repeat),
          static_cast<int>((ele_count * element_len) / repeat));
      Eigen::TensorMap<Eigen::Tensor<T, 1>> d_x_t(
          d_x_data, static_cast<int>((ele_count * element_len) / repeat));
      auto place = context.GetEigenDevice<Place>();
      d_x_t.device(place) = d_out_t.sum(Eigen::array<int, 1>({0}));
      d_out_data += (ele_count * element_len);
      d_x_data += ((ele_count * element_len) / repeat);
    }
W
wanghaoshuang 已提交
120 121 122 123 124
  }
};

}  // namespace operators
}  // namespace paddle