fake_quantize_op.h 9.7 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Z
Zhen Wang 已提交
20
#include "paddle/fluid/framework/tensor_util.h"
视言's avatar
视言 已提交
21 22 23 24 25
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

26 27 28 29
template <typename DeviceContext, typename T>
struct FindAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const T* in, const int num, T* out);
};
视言's avatar
视言 已提交
30 31

template <typename DeviceContext, typename T>
32 33 34 35 36 37 38 39 40 41 42 43 44 45
struct ClipAndFakeQuantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  framework::Tensor* out);
};

template <typename DeviceContext, typename T>
struct FindRangeAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale);
};

46 47 48 49 50 51 52 53 54 55 56 57 58
template <typename DeviceContext, typename T>
struct FindChannelAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const T* in, const int num,
                  const int channel, T* out);
};

template <typename DeviceContext, typename T>
struct ChannelClipAndFakeQuantFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in,
                  const framework::Tensor& scale, const int bin_cnt,
                  const int channel, framework::Tensor* out);
};

59 60 61 62 63 64 65 66 67
template <typename DeviceContext, typename T>
struct FindMovingAverageAbsMaxFunctor {
  void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum,
                  const framework::Tensor& in_state,
                  const framework::Tensor& cur_scale,
                  framework::Tensor* out_state, framework::Tensor* out_accum,
                  framework::Tensor* out_scale);
};

68 69
template <typename DeviceContext, typename T>
class FakeQuantizeAbsMaxKernel : public framework::OpKernel<T> {
视言's avatar
视言 已提交
70
 public:
71 72 73 74 75 76 77 78 79 80 81 82 83 84
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    T* out_s = out_scale->mutable_data<T>(context.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;

    auto& dev_ctx = context.template device_context<DeviceContext>();
    const T* in_data = in->data<T>();
    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in_data, in->numel(), out_s);
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                bin_cnt, out);
视言's avatar
视言 已提交
85
  }
86
};
视言's avatar
视言 已提交
87

Z
Zhen Wang 已提交
88 89 90 91 92 93 94
template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");

    auto* out = context.Output<framework::Tensor>("Out");
95 96
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
Z
Zhen Wang 已提交
97 98 99 100 101 102
    out->mutable_data<T>(context.GetPlace());

    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;

    auto& dev_ctx = context.template device_context<DeviceContext>();
103 104 105 106
    FindChannelAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, in->data<T>(), in->numel(), in->dims()[0], out_scale_data);
    ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
        dev_ctx, *in, *out_scale, bin_cnt, in->dims()[0], out);
Z
Zhen Wang 已提交
107 108 109
  }
};

110 111 112 113
template <typename DeviceContext, typename T>
class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
视言's avatar
视言 已提交
114
    auto* in = context.Input<framework::Tensor>("X");
115
    auto* in_scale = context.Input<framework::Tensor>("InScale");
视言's avatar
视言 已提交
116

117 118 119 120
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    bool is_test = context.Attr<bool>("is_test");
视言's avatar
视言 已提交
121 122
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
123
    auto& dev_ctx = context.template device_context<DeviceContext>();
视言's avatar
视言 已提交
124

125 126 127 128 129
    // testing
    if (is_test) {
      ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
                                                  bin_cnt, out);
      return;
视言's avatar
视言 已提交
130 131
    }

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    // training
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    auto* out_scales = context.Output<framework::Tensor>("OutScales");
    auto* iter = context.Input<framework::Tensor>("Iter");

    int window_size = context.Attr<int>("window_size");
    out_scale->mutable_data<T>(context.GetPlace());

    framework::Tensor cur_scale;
    T* cur_scale_data = cur_scale.mutable_data<T>({1}, context.GetPlace());
    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);
    FindRangeAbsMaxFunctor<DeviceContext, T>()(dev_ctx, cur_scale, *in_scale,
                                               *iter, window_size, out_scales,
                                               out_scale);
    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                bin_cnt, out);
视言's avatar
视言 已提交
149 150 151
  }
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
template <typename DeviceContext, typename T>
class FakeQuantizeMovingAverageAbsMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* in_scale = context.Input<framework::Tensor>("InScale");
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    bool is_test = context.Attr<bool>("is_test");
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    // testing
    if (is_test) {
      ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
                                                  bin_cnt, out);
      return;
    }

    // training
    auto* in_accum = context.Input<framework::Tensor>("InAccum");
    auto* in_state = context.Input<framework::Tensor>("InState");
    auto& allocator =
        platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx);
    auto cur_scale = allocator.Allocate(1 * sizeof(T));
    T* cur_scale_data = static_cast<T*>(cur_scale->ptr());

    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);

    auto* out_state = context.Output<framework::Tensor>("OutState");
    auto* out_accum = context.Output<framework::Tensor>("OutAccum");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    out_state->mutable_data<T>(context.GetPlace());
    out_accum->mutable_data<T>(context.GetPlace());
    out_scale->mutable_data<T>(context.GetPlace());
    float moving_rate = context.Attr<float>("moving_rate");

    FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
        out_accum, out_scale);

    ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                bin_cnt, out);
  }
};

Z
Zhen Wang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename DeviceContext, typename T>
class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
    framework::TensorCopy(*in, context.GetPlace(), dev_ctx, out);

    bool is_test = context.Attr<bool>("is_test");
    // testing
    if (is_test) {
      return;
    }

    // training
    auto* in_accum = context.Input<framework::Tensor>("InAccum");
    auto* in_state = context.Input<framework::Tensor>("InState");
    auto& allocator =
        platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx);
    auto cur_scale = allocator.Allocate(1 * sizeof(T));
    T* cur_scale_data = static_cast<T*>(cur_scale->ptr());

    FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
                                          cur_scale_data);

    auto* out_state = context.Output<framework::Tensor>("OutState");
    auto* out_accum = context.Output<framework::Tensor>("OutAccum");
    auto* out_scale = context.Output<framework::Tensor>("OutScale");
    out_state->mutable_data<T>(context.GetPlace());
    out_accum->mutable_data<T>(context.GetPlace());
    out_scale->mutable_data<T>(context.GetPlace());
    float moving_rate = context.Attr<float>("moving_rate");

    FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
        dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
        out_accum, out_scale);
  }
};

视言's avatar
视言 已提交
242 243
}  // namespace operators
}  // namespace paddle