sparse_attention_op.cu 26.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
16

17 18 19
#include <limits>
#include <string>
#include <vector>
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#if defined(PADDLE_WITH_CUDA)
#include "paddle/fluid/platform/dynload/cusparse.h"
#endif

namespace ops = paddle::operators;
namespace plf = paddle::platform;

namespace paddle {
namespace operators {

template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
                                                int width = warpSize) {
  return __shfl_xor_sync(mask, val, width);
}

template <typename T, int batch_size, int warp_size>
__device__ __forceinline__ void WarpReduceSum(T* sum) {
#pragma unroll
  for (int offset = warp_size / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < batch_size; ++i) {
      T sum_val = CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int batch_size, int warp_size>
__device__ __forceinline__ void WarpReduceMax(T* sum) {
#pragma unroll
  for (int offset = warp_size / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < batch_size; ++i) {
      T max_val = CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = max(sum[i], max_val);
    }
  }
}

template <typename T, int BlockSize, int BlockNnzMax>
__global__ void BlockSparseSoftmaxForward(T* softmax, const T* src, T scale,
                                          const T* kp_mask, const T* attn_mask,
                                          const int* layout_rowptr,
                                          const int* layout_colindex,
                                          int num_rows) {
  // current thread related info
  const int WarpSize = 32;
  const int cur_row = blockIdx.x * blockDim.y + threadIdx.y;
  if (cur_row < num_rows) {
    const int cur_block_row = cur_row / BlockSize;
    const int cur_block_nnz =
        layout_rowptr[cur_block_row + 1] - layout_rowptr[cur_block_row];

77 78
    T srcdata[(BlockSize * BlockNnzMax + WarpSize - 1) / WarpSize] = {0};
    T attndata[(BlockSize * BlockNnzMax + WarpSize - 1) / WarpSize] = {0};
79 80 81 82

    // read tensor data, attn mask
    const int iter = (cur_block_nnz + WarpSize - 1) / WarpSize;
    const T* srcptr = src + layout_rowptr[cur_block_row];
83 84 85 86 87

    const T* attnptr = (attn_mask == nullptr)
                           ? nullptr
                           : (attn_mask + cur_block_row * num_rows);
    // the coloumn start index in current row
88 89 90 91 92
    const int* colindex = layout_colindex + layout_rowptr[cur_block_row];
    for (int j = 0; j < iter; j++) {
      int cur_block_col = j * WarpSize + threadIdx.x;
      int cur_reg_index = j;
      if (cur_block_col < cur_block_nnz) {
93 94
        // read kp mask
        T cur_kp_mask;
95 96
        if ((kp_mask != nullptr) && std::abs(kp_mask[colindex[cur_block_col]]) <
                                        std::numeric_limits<T>::epsilon()) {
97 98 99 100 101
          cur_kp_mask = -std::numeric_limits<T>::infinity();
        } else {
          cur_kp_mask = 0;
        }
        // do mask operation
102 103
        if ((attnptr != nullptr) && std::abs(attnptr[colindex[cur_block_col]]) <
                                        std::numeric_limits<T>::epsilon()) {
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
          srcdata[cur_reg_index] =
              -std::numeric_limits<T>::infinity() * scale + cur_kp_mask;
        } else {
          srcdata[cur_reg_index] = scale * srcptr[cur_block_col] + cur_kp_mask;
        }
      } else {
        srcdata[cur_reg_index] = -std::numeric_limits<T>::infinity();
      }
    }

    // max value
    T max_value = srcdata[0];
    const int kIteration =
        (cur_block_nnz * BlockSize + WarpSize - 1) / WarpSize;
#pragma unroll
    for (int it = 1; it < kIteration; ++it) {
      max_value = (max_value > srcdata[it]) ? max_value : srcdata[it];
    }
    WarpReduceMax<T, 1, WarpSize>(&max_value);

    // exp sum
    T sum = 0;
#pragma unroll
    for (int it = 0; it < kIteration; ++it) {
      srcdata[it] = std::exp(srcdata[it] - max_value);
      sum += srcdata[it];
    }
    WarpReduceSum<T, 1, WarpSize>(&sum);

    // compute softmax and write out
    T* softmaxptr = softmax + layout_rowptr[cur_block_row];
    for (int j = 0; j < iter; j++) {
      int cur_block_col = j * WarpSize + threadIdx.x;
      int cur_reg_index = j;
      if (cur_block_col < cur_block_nnz) {
        softmaxptr[cur_block_col] = srcdata[cur_reg_index] / sum;
      }
    }
  }
}

template <typename T, int BlockSize, int BlockNnzMax>
__global__ void BlockSparseSoftmaxBackward(T* dst, const T* grad, const T* src,
                                           T scale, const int* layout_rowptr,
                                           const int* layout_colindex,
                                           int num_rows) {
  // current thread related info
  const int WarpSize = 32;
  const int cur_row = blockIdx.x * blockDim.y + threadIdx.y;
  if (cur_row < num_rows) {
    const int cur_block_row = cur_row / BlockSize;
    const int cur_block_nnz =
        layout_rowptr[cur_block_row + 1] - layout_rowptr[cur_block_row];

    T srcdata[(BlockSize * BlockNnzMax + WarpSize - 1) / WarpSize];
    T graddata[(BlockSize * BlockNnzMax + WarpSize - 1) / WarpSize];

    // read tensor data, attn mask
    const int iter = (cur_block_nnz + WarpSize - 1) / WarpSize;
    const T* srcptr = src + layout_rowptr[cur_block_row];
    const T* gradptr = grad + layout_rowptr[cur_block_row];
    for (int j = 0; j < iter; j++) {
      int cur_block_col = j * WarpSize + threadIdx.x;
      int cur_reg_index = j;
      if (cur_block_col < cur_block_nnz) {
        srcdata[cur_reg_index] = srcptr[cur_block_col];
        graddata[cur_reg_index] = gradptr[cur_block_col];
      } else {
        srcdata[cur_reg_index] = 0;
        graddata[cur_reg_index] = 0;
      }
    }

    T sum = 0;
    const int kIteration =
        (cur_block_nnz * BlockSize + WarpSize - 1) / WarpSize;
#pragma unroll
    for (int it = 0; it < kIteration; ++it) {
      sum += srcdata[it] * graddata[it];
    }
    WarpReduceSum<T, 1, WarpSize>(&sum);

    // compute softmax and write out
    T* dstptr = dst + layout_rowptr[cur_block_row];
    for (int j = 0; j < iter; j++) {
      int cur_block_col = j * WarpSize + threadIdx.x;
      int cur_reg_index = j;
      if (cur_block_col < cur_block_nnz) {
        dstptr[cur_block_col] =
            scale * srcdata[cur_reg_index] * (graddata[cur_reg_index] - sum);
      }
    }
  }
}

using Tensor = framework::Tensor;
/*
input: sparse C in CSR format (num_rows,num_rows)
output: sparse C after softmax operation
*/
template <typename DeviceContext, typename T>
void SparseSoftmaxForward(const platform::CUDADeviceContext& ctx,
                          const Tensor* offset, const Tensor* columns,
                          Tensor* input, Tensor* output, const int blocksize,
208 209 210
                          const int num_rows, const int num_cols,
                          const Tensor* key_padding_mask,
                          const Tensor* attn_mask) {
211 212 213 214
  const int* offset_data = offset->data<int>();
  const int* columns_data = columns->data<int>();
  T* input_data = input->data<T>();
  T* output_data = output->data<T>();
215 216 217 218 219
  // Add mask
  const T* key_padding_mask_data =
      (key_padding_mask != nullptr) ? key_padding_mask->data<T>() : nullptr;
  const T* attn_mask_data =
      (attn_mask != nullptr) ? attn_mask->data<T>() : nullptr;
220 221 222 223 224 225

  const int block_size = 1;
  dim3 blocks(32, 4, 1);
  int grid = (num_rows * block_size + 3) / 4;
  T scaling = static_cast<T>(1.0) / sqrt(static_cast<T>(num_cols));

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  if (num_cols <= 4) {
    BlockSparseSoftmaxForward<T, block_size, 4><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 4 && num_cols <= 8) {
    BlockSparseSoftmaxForward<T, block_size, 8><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 8 && num_cols <= 16) {
    BlockSparseSoftmaxForward<T, block_size, 16><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 16 && num_cols <= 32) {
    BlockSparseSoftmaxForward<T, block_size, 32><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 32 && num_cols <= 64) {
    BlockSparseSoftmaxForward<T, block_size, 64><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 64 && num_cols <= 128) {
    BlockSparseSoftmaxForward<T, block_size, 128><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 128 && num_cols <= 256) {
    BlockSparseSoftmaxForward<T, block_size, 256><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else if (num_cols > 256 && num_cols <= 512) {
    BlockSparseSoftmaxForward<T, block_size, 512><<<grid, blocks>>>(
        output_data, input_data, scaling, key_padding_mask_data, attn_mask_data,
        offset_data, columns_data, num_rows);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The head_dim of query in sparse_attention op should less or equal "
        "512"));
  }
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

template <typename DeviceContext, typename T>
void SparseSoftmaxBackward(const platform::CUDADeviceContext& ctx,
                           const Tensor* offset, const Tensor* columns,
                           Tensor* dx, const Tensor* dout, const Tensor* out,
                           const int blocksize, const int num_rows,
                           const int num_cols) {
  const int* offset_data = offset->data<int>();
  const int* columns_data = columns->data<int>();
  T* dx_data = dx->data<T>();
  const T* dout_data = dout->data<T>();
  const T* out_data = out->data<T>();

  const int block_size = 1;
  dim3 blocks(32, 4, 1);
  int grid = (num_rows * block_size + 3) / 4;
  T scaling = static_cast<T>(1.0) / sqrt(static_cast<T>(num_cols));

282
  if (num_cols <= 4) {
283 284 285
    BlockSparseSoftmaxBackward<T, block_size, 4>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
286
  } else if (num_cols > 4 && num_cols <= 8) {
287 288 289
    BlockSparseSoftmaxBackward<T, block_size, 8>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
290
  } else if (num_cols > 8 && num_cols <= 16) {
291 292 293
    BlockSparseSoftmaxBackward<T, block_size, 16>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
294
  } else if (num_cols > 16 && num_cols <= 32) {
295 296 297
    BlockSparseSoftmaxBackward<T, block_size, 32>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
298
  } else if (num_cols > 32 && num_cols <= 64) {
299 300 301
    BlockSparseSoftmaxBackward<T, block_size, 64>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
302
  } else if (num_cols > 64 && num_cols <= 128) {
303 304 305
    BlockSparseSoftmaxBackward<T, block_size, 128>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
306
  } else if (num_cols > 128 && num_cols <= 256) {
307 308 309
    BlockSparseSoftmaxBackward<T, block_size, 256>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
310
  } else if (num_cols > 256 && num_cols <= 512) {
311 312 313
    BlockSparseSoftmaxBackward<T, block_size, 512>
        <<<grid, blocks>>>(dx_data, dout_data, out_data, scaling, offset_data,
                           columns_data, num_rows);
314 315 316 317 318
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The head_dim of query in sparse_attention op should less or equal "
        "512"));
  }
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
}

using VarType = framework::proto::VarType;
inline cudaDataType_t GetGpuType(const VarType::Type data_type) {
  if (data_type == VarType::FP32) {
    return CUDA_R_32F;
  } else if (data_type == VarType::FP64) {
    return CUDA_R_64F;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Not support tensor type in sparse_attention OP: %s",
        framework::DataTypeToString(data_type)));
  }
}

inline cusparseOperation_t GetTransposeOperation(const bool transpose) {
  if (transpose) {
    return CUSPARSE_OPERATION_TRANSPOSE;
  } else {
    return CUSPARSE_OPERATION_NON_TRANSPOSE;
  }
}

void CusparseDestroy(cusparseDnMatDescr_t* dn_mat_first,
                     cusparseDnMatDescr_t* dn_mat_second,
                     cusparseSpMatDescr_t* sp_mat) {
  platform::dynload::cusparseDestroyDnMat(*dn_mat_first);
  platform::dynload::cusparseDestroyDnMat(*dn_mat_second);
  platform::dynload::cusparseDestroySpMat(*sp_mat);
}

/*
input: dense A (num_rows,num_cols), dense B (num_rows,num_cols)
output: sparse C in CSR format (num_rows,num_rows)
*/
template <typename DeviceContext, typename T>
void DotSdd(const platform::CUDADeviceContext& ctx, const Tensor* a,
            const Tensor* b, const Tensor* c_offset, const Tensor* c_columns,
            Tensor* c_value, const int num_rows, const int num_cols,
            const bool a_transpose, const bool b_transpose) {
  const T* a_data = a->data<T>();
  const T* b_data = b->data<T>();
  const int* c_offset_data = c_offset->data<int>();
  const int* c_columns_data = c_columns->data<int>();
  T* c_value_data = c_value->data<T>();

365 366
  cudaDataType_t gpu_type =
      GetGpuType(framework::TransToProtoVarType(c_value->dtype()));
367 368 369 370 371 372 373 374 375 376 377 378 379 380
  cusparseHandle_t handle = nullptr;
  cusparseDnMatDescr_t mat_a, mat_b;
  cusparseSpMatDescr_t mat_c;
  platform::dynload::cusparseCreate(&handle);

  // Create dense matrix A
  platform::dynload::cusparseCreateDnMat(&mat_a, num_rows, num_cols, num_cols,
                                         const_cast<T*>(a_data), gpu_type,
                                         CUSPARSE_ORDER_ROW);
  // Create dense matrix B
  platform::dynload::cusparseCreateDnMat(&mat_b, num_rows, num_cols, num_cols,
                                         const_cast<T*>(b_data), gpu_type,
                                         CUSPARSE_ORDER_ROW);
  // Create sparse matrix C in CSR format
S
Shijie 已提交
381
  int c_nnz = c_columns->numel();
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
  platform::dynload::cusparseCreateCsr(
      &mat_c, num_rows, num_rows, c_nnz, const_cast<int*>(c_offset_data),
      const_cast<int*>(c_columns_data), c_value_data, CUSPARSE_INDEX_32I,
      CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, gpu_type);

  T alpha = 1;
  T beta = 0;

  size_t buffer_size = 0;
  platform::dynload::cusparseSDDMM_bufferSize(
      handle, GetTransposeOperation(a_transpose),
      GetTransposeOperation(b_transpose), &alpha, mat_a, mat_b, &beta, mat_c,
      gpu_type, CUSPARSE_SDDMM_ALG_DEFAULT, &buffer_size);
  auto d_buffer_ptr = paddle::memory::Alloc(ctx, buffer_size);
  void* d_buffer = static_cast<void*>(d_buffer_ptr->ptr());

  platform::dynload::cusparseSDDMM(handle, GetTransposeOperation(a_transpose),
                                   GetTransposeOperation(b_transpose), &alpha,
                                   mat_a, mat_b, &beta, mat_c, gpu_type,
                                   CUSPARSE_SDDMM_ALG_DEFAULT, d_buffer);

  CusparseDestroy(&mat_a, &mat_b, &mat_c);
  platform::dynload::cusparseDestroy(handle);
}

/*
input: sparse A in CSR format (num_rows,num_rows), dense B (num_rows,num_cols)
output: dense C (num_rows,num_cols)
*/
template <typename DeviceContext, typename T>
void DotDsd(const platform::CUDADeviceContext& ctx, const Tensor* a_offset,
            const Tensor* a_columns, const Tensor* a_value, const Tensor* b,
            Tensor* c, const int num_rows, const int num_cols,
            const bool a_transpose, const bool b_transpose) {
  const int* a_offset_data = a_offset->data<int>();
  const int* a_columns_data = a_columns->data<int>();
  const T* a_value_data = a_value->data<T>();
  const T* b_data = b->data<T>();
  T* c_data = c->data<T>();

422 423
  cudaDataType_t gpu_type =
      GetGpuType(framework::TransToProtoVarType(c->dtype()));
424 425 426 427 428 429
  cusparseHandle_t handle = nullptr;
  cusparseSpMatDescr_t mat_a;
  cusparseDnMatDescr_t mat_b, mat_c;
  platform::dynload::cusparseCreate(&handle);

  // Create sparse matrix A in CSR format
S
Shijie 已提交
430
  int a_nnz = a_columns->numel();
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  platform::dynload::cusparseCreateCsr(
      &mat_a, num_rows, num_rows, a_nnz, const_cast<int*>(a_offset_data),
      const_cast<int*>(a_columns_data), const_cast<T*>(a_value_data),
      CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO,
      gpu_type);

  // Create dense matrix B
  platform::dynload::cusparseCreateDnMat(&mat_b, num_rows, num_cols, num_cols,
                                         const_cast<T*>(b_data), gpu_type,
                                         CUSPARSE_ORDER_ROW);
  // Create dense matrix C
  platform::dynload::cusparseCreateDnMat(&mat_c, num_rows, num_cols, num_cols,
                                         c_data, gpu_type, CUSPARSE_ORDER_ROW);

  T alpha = 1;
  T beta = 0;

  size_t buffer_size = 0;
  // allocate an external buffer if needed
  platform::dynload::cusparseSpMM_bufferSize(
      handle, GetTransposeOperation(a_transpose),
      GetTransposeOperation(b_transpose), &alpha, mat_a, mat_b, &beta, mat_c,
      gpu_type, CUSPARSE_SPMM_ALG_DEFAULT, &buffer_size);
  auto d_buffer_ptr = paddle::memory::Alloc(ctx, buffer_size);
  void* d_buffer = static_cast<void*>(d_buffer_ptr->ptr());

  platform::dynload::cusparseSpMM(handle, GetTransposeOperation(a_transpose),
                                  GetTransposeOperation(b_transpose), &alpha,
                                  mat_a, mat_b, &beta, mat_c, gpu_type,
                                  CUSPARSE_SPMM_ALG_DEFAULT, d_buffer);

  CusparseDestroy(&mat_b, &mat_c, &mat_a);
  platform::dynload::cusparseDestroy(handle);
}

std::vector<Tensor> GetSplitTensor(Tensor* input) {
  auto dims = input->dims();
  int batch_size = dims[0];
  int num_heads = dims[1];
  std::vector<int> new_dims(dims.size() - 1);
  new_dims[0] = batch_size * num_heads;
  for (int i = 1; i < new_dims.size(); i++) {
    new_dims[i] = dims[i + 1];
  }
475
  input->Resize(phi::make_ddim(new_dims));
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
  return input->Split(1, 0);
}

template <typename DeviceContext, typename T>
class SparseAttentionCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto query = *ctx.Input<Tensor>("Q");
    auto key = *ctx.Input<Tensor>("K");
    auto value = *ctx.Input<Tensor>("V");
    auto offset = *ctx.Input<Tensor>("Offset");
    auto columns = *ctx.Input<Tensor>("Columns");
    auto output_ptr = ctx.Output<Tensor>("Out");
    output_ptr->mutable_data<T>(ctx.GetPlace());
    auto sparse_dot_sdd_ptr = ctx.Output<Tensor>("SparseDotSdd");
    sparse_dot_sdd_ptr->mutable_data<T>(ctx.GetPlace());
    auto softmax_ptr = ctx.Output<Tensor>("Softmax");
    softmax_ptr->mutable_data<T>(ctx.GetPlace());
494 495 496 497 498 499
    // add Mask
    auto* key_padding_mask = ctx.HasInput("KeyPaddingMask")
                                 ? ctx.Input<Tensor>("KeyPaddingMask")
                                 : nullptr;
    auto* attn_mask =
        ctx.HasInput("AttnMask") ? ctx.Input<Tensor>("AttnMask") : nullptr;
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

    auto output = *output_ptr;
    auto result_sdd = *sparse_dot_sdd_ptr;
    auto result_softmax = *softmax_ptr;

    auto query_dims = query.dims();
    int batch_size = query_dims[0];
    int num_heads = query_dims[1];
    int M = query_dims[2];
    int N = query_dims[3];

    std::vector<Tensor> query_lists = GetSplitTensor(&query);
    std::vector<Tensor> key_lists = GetSplitTensor(&key);
    std::vector<Tensor> value_lists = GetSplitTensor(&value);
    std::vector<Tensor> offset_lists = GetSplitTensor(&offset);
    std::vector<Tensor> columns_lists = GetSplitTensor(&columns);
    std::vector<Tensor> result_sdd_lists = GetSplitTensor(&result_sdd);
    std::vector<Tensor> result_softmax_lists = GetSplitTensor(&result_softmax);
    std::vector<Tensor> output_lists = GetSplitTensor(&output);

    const auto& dev_ctx = ctx.cuda_device_context();
    const int iter_num = batch_size * num_heads;
    for (int i = 0; i < iter_num; i++) {
      DotSdd<DeviceContext, T>(dev_ctx, &query_lists[i], &key_lists[i],
                               &offset_lists[i], &columns_lists[i],
                               &result_sdd_lists[i], M, N, false, true);

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      if (key_padding_mask != nullptr && attn_mask != nullptr) {
        SparseSoftmaxForward<DeviceContext, T>(
            dev_ctx, &offset_lists[i], &columns_lists[i], &result_sdd_lists[i],
            &result_softmax_lists[i], 1, M, N,
            key_padding_mask + (i / num_heads) * M, attn_mask);
      } else if (key_padding_mask != nullptr && attn_mask == nullptr) {
        SparseSoftmaxForward<DeviceContext, T>(
            dev_ctx, &offset_lists[i], &columns_lists[i], &result_sdd_lists[i],
            &result_softmax_lists[i], 1, M, N,
            key_padding_mask + (i / num_heads) * M, nullptr);
      } else if (key_padding_mask == nullptr && attn_mask != nullptr) {
        SparseSoftmaxForward<DeviceContext, T>(
            dev_ctx, &offset_lists[i], &columns_lists[i], &result_sdd_lists[i],
            &result_softmax_lists[i], 1, M, N, nullptr, attn_mask);
      } else {
        SparseSoftmaxForward<DeviceContext, T>(
            dev_ctx, &offset_lists[i], &columns_lists[i], &result_sdd_lists[i],
            &result_softmax_lists[i], 1, M, N, nullptr, nullptr);
      }
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

      DotDsd<DeviceContext, T>(dev_ctx, &offset_lists[i], &columns_lists[i],
                               &result_softmax_lists[i], &value_lists[i],
                               &output_lists[i], M, N, false, false);
    }
  }
};

template <typename DeviceContext, typename T>
class SparseAttentionGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto query = *ctx.Input<Tensor>("Q");
    auto key = *ctx.Input<Tensor>("K");
    auto value = *ctx.Input<Tensor>("V");
    auto offset = *ctx.Input<Tensor>("Offset");
    auto columns = *ctx.Input<Tensor>("Columns");
    auto sparse_dot_sdd = *ctx.Input<Tensor>("SparseDotSdd");
    auto softmax = *ctx.Input<Tensor>("Softmax");
    auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dquery_ptr = ctx.Output<Tensor>(framework::GradVarName("Q"));
    auto* dkey_ptr = ctx.Output<Tensor>(framework::GradVarName("K"));
    auto* dvalue_ptr = ctx.Output<Tensor>(framework::GradVarName("V"));
    dquery_ptr->mutable_data<T>(ctx.GetPlace());
    dkey_ptr->mutable_data<T>(ctx.GetPlace());
    dvalue_ptr->mutable_data<T>(ctx.GetPlace());
    auto dquery = *dquery_ptr;
    auto dkey = *dkey_ptr;
    auto dvalue = *dvalue_ptr;

    auto query_dims = query.dims();
    int batch_size = query_dims[0];
    int num_heads = query_dims[1];
    int M = query_dims[2];
    int N = query_dims[3];

    std::vector<Tensor> query_lists = GetSplitTensor(&query);
    std::vector<Tensor> key_lists = GetSplitTensor(&key);
    std::vector<Tensor> value_lists = GetSplitTensor(&value);
    std::vector<Tensor> offset_lists = GetSplitTensor(&offset);
    std::vector<Tensor> columns_lists = GetSplitTensor(&columns);
    std::vector<Tensor> sparse_dot_sdd_lists = GetSplitTensor(&sparse_dot_sdd);
    std::vector<Tensor> softmax_lists = GetSplitTensor(&softmax);
    std::vector<Tensor> dout_lists = GetSplitTensor(&dout);
    std::vector<Tensor> dquery_lists = GetSplitTensor(&dquery);
    std::vector<Tensor> dkey_lists = GetSplitTensor(&dkey);
    std::vector<Tensor> dvalue_lists = GetSplitTensor(&dvalue);

    const int iter_num = batch_size * num_heads;
    const auto& dev_ctx = ctx.cuda_device_context();
    for (int i = 0; i < iter_num; i++) {
      // dValue = transpose(result_softmax) * dOut
      DotDsd<DeviceContext, T>(dev_ctx, &offset_lists[i], &columns_lists[i],
                               &softmax_lists[i], &dout_lists[i],
                               &dvalue_lists[i], M, N, true, false);

      // dSoftmax = dOut * transpose(Value)
S
Shijie 已提交
603
      int nnz_num = columns_lists[i].numel();
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
      Tensor dsoftmax;
      dsoftmax.Resize({nnz_num});
      dsoftmax.mutable_data<T>(ctx.GetPlace());
      DotSdd<DeviceContext, T>(dev_ctx, &dout_lists[i], &value_lists[i],
                               &offset_lists[i], &columns_lists[i], &dsoftmax,
                               M, N, false, true);

      // dSparseDotSdd = dSoftmax * softmax'(SparseDotSdd)
      Tensor dsparse_dot_sdd;
      dsparse_dot_sdd.Resize({nnz_num});
      dsparse_dot_sdd.mutable_data<T>(ctx.GetPlace());
      SparseSoftmaxBackward<DeviceContext, T>(
          dev_ctx, &offset_lists[i], &columns_lists[i], &dsparse_dot_sdd,
          &dsoftmax, &softmax_lists[i], 1, M, N);

      // dQuery = dSparseDotSdd * Key
      DotDsd<DeviceContext, T>(dev_ctx, &offset_lists[i], &columns_lists[i],
                               &dsparse_dot_sdd, &key_lists[i],
                               &dquery_lists[i], M, N, false, false);

      // dKey = transpose(dSparseDotSdd) * Query
      DotDsd<DeviceContext, T>(dev_ctx, &offset_lists[i], &columns_lists[i],
                               &dsparse_dot_sdd, &query_lists[i],
                               &dkey_lists[i], M, N, true, false);
    }
  }
};

}  // namespace operators
}  // namespace paddle
REGISTER_OP_CUDA_KERNEL(
    sparse_attention,
    ops::SparseAttentionCUDAKernel<plf::CUDADeviceContext, float>,
    ops::SparseAttentionCUDAKernel<plf::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
    sparse_attention_grad,
    ops::SparseAttentionGradCUDAKernel<plf::CUDADeviceContext, float>,
    ops::SparseAttentionGradCUDAKernel<plf::CUDADeviceContext, double>);