multihead_matmul_op.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"

namespace paddle {
namespace operators {

class MultiHeadMatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("Q"), true,
                      "Input(Q) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasInput("K"), true,
                      "Input(K) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasInput("V"), true,
                      "Input(V) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasInput("BiasQ"), true,
                      "Input(BiasQ) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasInput("BiasK"), true,
                      "Input(BiasQ) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasInput("BiasV"), true,
                      "Input(BiasQ) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasInput("BiasQK"), true,
                      "Input(BiasQK) of MultiheadOp should not be null.");
    PADDLE_ENFORCE_EQ(context->HasOutput("Out"), true,
                      "Output(Out) of MatMulOp should not be null.");

    auto dim_q = context->GetInputDim("Q");
    PADDLE_ENFORCE_GT(dim_q.size(), 2,
                      "Multihead input should be at least 3-D tensor.");

    auto dim_k = context->GetInputDim("K");
    PADDLE_ENFORCE_GT(dim_q.size(), 2,
                      "Multihead input should be at least 3-D tensor.");

    auto dim_v = context->GetInputDim("V");
    PADDLE_ENFORCE_GT(dim_q.size(), 2,
                      "Multihead input should be at least 3-D tensor.");

    PADDLE_ENFORCE_EQ(dim_q[0], dim_k[0],
                      "Multihead input should have same batch size");
    PADDLE_ENFORCE_EQ(dim_q[0], dim_v[0],
                      "Multihead input should have same batch size");

    PADDLE_ENFORCE_EQ(dim_q[1], dim_k[1],
                      "Multihead input should have same size");
    PADDLE_ENFORCE_EQ(dim_q[1], dim_v[1],
                      "Multihead input should have same size");

    PADDLE_ENFORCE_EQ(dim_q[2], dim_k[2],
                      "Multihead input should have same size");
    PADDLE_ENFORCE_EQ(dim_q[2], dim_v[2],
                      "Multihead input should have same size");

    auto dim_bias_q = context->GetInputDim("BiasQ");
    PADDLE_ENFORCE_GT(dim_bias_q.size(), 0,
                      "Multihead input should be at least 1-D tensor.");
    auto dim_bias_k = context->GetInputDim("BiasK");
    PADDLE_ENFORCE_GT(dim_bias_k.size(), 0,
                      "Multihead input should be at least 1-D tensor.");
    auto dim_bias_v = context->GetInputDim("BiasV");
    PADDLE_ENFORCE_GT(dim_bias_v.size(), 0,
                      "Multihead input should be at least 1-D tensor.");

    PADDLE_ENFORCE_EQ(dim_bias_q[0], dim_bias_k[0],
                      "Multihead input bias should have same batch size");
    PADDLE_ENFORCE_EQ(dim_bias_q[0], dim_bias_v[0],
                      "Multihead input bias should have same batch size");

    auto dim_bias_qk = context->GetInputDim("BiasQK");
    PADDLE_ENFORCE_GT(dim_bias_qk.size(), 3,
                      "Multihead input bias qk should be at least 4-D tensor.");

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    int b_indx = dim_bias_q.size() - 1;
    int indx = dim_q.size() - 1;

    PADDLE_ENFORCE_EQ(
        dim_bias_q[b_indx], dim_q[indx],
        platform::errors::InvalidArgument(
            "bias_q's last dim size should equal to"
            " q last dim size, but received bias_q's size is:%d q is:%d",
            dim_bias_q[b_indx], dim_q[indx]));
    PADDLE_ENFORCE_EQ(
        dim_bias_k[b_indx], dim_k[indx],
        platform::errors::InvalidArgument(
            "bias_k's last dim size should equal to"
            " k last dim size, but received bias_k's size is:%d k is:%d",
            dim_bias_k[b_indx], dim_k[indx]));
    PADDLE_ENFORCE_EQ(
        dim_bias_v[b_indx], dim_v[indx],
        platform::errors::InvalidArgument(
            "bias_v's last dim size should equal to"
            " v last dim size, but received bias_v's size is:%d v is:%d",
            dim_bias_v[b_indx], dim_v[indx]));
Z
zhaoyuchen2018 已提交
112 113 114 115

    PADDLE_ENFORCE_EQ(dim_q[0], dim_bias_qk[0],
                      platform::errors::InvalidArgument(
                          "q should have same batch size"
116 117
                          "with bias_qk, but received q's batch size is:%d "
                          "bias_qk's batch size is:%d",
Z
zhaoyuchen2018 已提交
118 119
                          dim_q[0], dim_bias_qk[0]));

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    int head_number = context->Attrs().Get<int>("head_number");
    PADDLE_ENFORCE_GT(head_number, 1,
                      "Multihead input head number should be at least 1.");

    context->SetOutputDim("Out", dim_q);
    context->ShareLoD("Q", /*->*/ "Out");
  }
};

class MultiHeadMatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Q", "The first input of MultiHeadMatMul op");
    AddInput("K", "The second input of MMultiHeadMatMul op");
    AddInput("V", "The third input of MultiHeadMatMul op");
    AddInput("BiasQ", "The first bias input of MultiHeadMatMul op");
    AddInput("BiasK", "The second bias input of MultiHeadMatMul op");
    AddInput("BiasV", "The third  bias input of MultiHeadMatMul op");
    AddInput("BiasQK", "The QK bias input of MultiHeadMatMul op");
    AddOutput("Out", "The output of MultiHeadMatMul op");
    AddAttr<bool>("transpose_Q",
                  R"DOC(If true, use the transpose of `Q`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_K",
                  R"DOC(If true, use the transpose of `K`.
        )DOC")
        .SetDefault(true);
    AddAttr<bool>("transpose_V",
                  R"DOC(If true, use the transpose of `V`.
        )DOC")
        .SetDefault(false);
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
    AddComment(R"DOC(
MultiHeadMatMul Operator.

This op is used for optimize multi head calculation in ernie model.
Not suggest to use in other case except has same structure as ernie.

Z
zhaoyuchen2018 已提交
161
Example of matrix multiplication with head_number of B
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]

Both the input `Q` and `K` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input `Q`, because
they are the same.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(multihead_matmul, ops::MultiHeadMatMulOp,
                             ops::MultiHeadMatMulOpMaker);