pool_op.h 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Pool2dOpMaker(framework::OpProto* proto,
                framework::OpAttrChecker* op_checker);
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Pool3dOpMaker(framework::OpProto* proto,
                framework::OpAttrChecker* op_checker);
};
52

Q
QI JUN 已提交
53
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
54
class PoolKernel : public framework::OpKernel<T> {
55 56
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
57
    const Tensor* in_x = context.Input<Tensor>("X");
58
    Tensor* out = context.Output<Tensor>("Out");
59

C
chengduoZH 已提交
60
    std::string pooling_type = context.Attr<std::string>("pooling_type");
61 62 63
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
64
    if (context.Attr<bool>("global_pooling")) {
65
      for (size_t i = 0; i < ksize.size(); ++i) {
C
fix bug  
chengduoZH 已提交
66
        paddings[i] = 0;
C
chengduoZH 已提交
67
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
68 69
      }
    }
Q
QI JUN 已提交
70
    auto& dev_ctx = context.template device_context<DeviceContext>();
71 72 73
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
74
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
75
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
76
              pool2d_forward;
77
          paddle::operators::math::MaxPool<T> pool_process;
Q
QI JUN 已提交
78 79
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
80

C
chengduoZH 已提交
81
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
82
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
83
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
84
              pool2d_forward;
85
          paddle::operators::math::AvgPool<T> pool_process;
Q
QI JUN 已提交
86 87
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
88 89 90 91
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
92
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
93
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
94
              pool3d_forward;
95
          paddle::operators::math::MaxPool<T> pool_process;
Q
QI JUN 已提交
96 97
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
C
chengduoZH 已提交
98
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
99
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
100
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
101
              pool3d_forward;
102
          paddle::operators::math::AvgPool<T> pool_process;
Q
QI JUN 已提交
103 104
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
105 106
        }
      } break;
C
fix bug  
chengduoZH 已提交
107
      default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
108 109 110 111
    }
  }
};

Q
QI JUN 已提交
112
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
113
class PoolGradKernel : public framework::OpKernel<T> {
114 115
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
116
    const Tensor* in_x = context.Input<Tensor>("X");
117 118 119
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
120
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
121

C
chengduoZH 已提交
122
    std::string pooling_type = context.Attr<std::string>("pooling_type");
123 124 125 126
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
127
    if (context.Attr<bool>("global_pooling")) {
C
fix bug  
chengduoZH 已提交
128 129
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
130
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
C
fix bug  
chengduoZH 已提交
131
      }
132
    }
Q
QI JUN 已提交
133
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
134 135 136
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
      auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
Q
QI JUN 已提交
137 138
      temp.device(
          *context.template device_context<DeviceContext>().eigen_device()) =
139 140 141 142 143
          temp.constant(static_cast<T>(0));

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
144
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
145
                pool2d_backward;
Q
QI JUN 已提交
146 147
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, in_x_grad);
C
chengduoZH 已提交
148
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
149
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
150
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
151
                pool2d_backward;
152
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
153 154
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, pool_process, in_x_grad);
155 156 157 158
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
159
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
160
                pool3d_backward;
Q
QI JUN 已提交
161 162
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, in_x_grad);
C
chengduoZH 已提交
163
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
164
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
165
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
166
                pool3d_backward;
167
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
168 169
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, pool_process, in_x_grad);
170 171
          }
        } break;
C
fix bug  
chengduoZH 已提交
172
        default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
173 174 175 176 177 178 179
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle