gpu_info.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
W
Wilber 已提交
16
#include <array>
17 18
#include <cstdlib>
#include <mutex>
F
From00 已提交
19
#include <set>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <vector>

#include "gflags/gflags.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
#include "paddle/fluid/memory/malloc.h"
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"

W
Wilber 已提交
43 44
#include "paddle/pten/backends/gpu/gpu_info.h"

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
  static RecordedGpuMallocHelper *Instance(int dev_id) {
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
  gpuError_t Malloc(void **ptr, size_t size) {
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto result = hipMalloc(ptr, size);
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
    auto result = cudaMalloc(ptr, size);
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
F
From00 已提交
186 187 188 189 190

#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
227 228 229 230 231 232
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
233
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
234 235 236 237 238
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
239 240 241 242 243
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
244
#endif
F
From00 已提交
245
  }
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
  static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;
F
From00 已提交
313 314 315

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

std::once_flag RecordedGpuMallocHelper::once_flag_;
std::vector<std::unique_ptr<RecordedGpuMallocHelper>>
    RecordedGpuMallocHelper::instances_;

gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(ptr, size);
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

F
From00 已提交
366 367 368 369
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

W
Wilber 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
int DnnVersion() { return pten::backends::gpu::DnnVersion(); }

int GetGPUDeviceCount() { return pten::backends::gpu::GetGPUDeviceCount(); }

int GetGPUComputeCapability(int id) {
  return pten::backends::gpu::GetGPUComputeCapability(id);
}

int GetGPURuntimeVersion(int id) {
  return pten::backends::gpu::GetGPURuntimeVersion(id);
}

int GetGPUDriverVersion(int id) {
  return pten::backends::gpu::GetGPUDriverVersion(id);
}

bool TensorCoreAvailable() {
  return pten::backends::gpu::TensorCoreAvailable();
}

int GetGPUMultiProcessors(int id) {
  return pten::backends::gpu::GetGPUMultiProcessors(id);
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
  return pten::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
}

int GetGPUMaxThreadsPerBlock(int id) {
  return pten::backends::gpu::GetGPUMaxThreadsPerBlock(id);
}

int GetCurrentDeviceId() { return pten::backends::gpu::GetCurrentDeviceId(); }

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
  return pten::backends::gpu::GetGpuMaxGridDimSize(id);
}

std::vector<int> GetSelectedDevices() {
  return pten::backends::gpu::GetSelectedDevices();
}

const gpuDeviceProp &GetDeviceProperties(int id) {
  return pten::backends::gpu::GetDeviceProperties(id);
}

void SetDeviceId(int device_id) { pten::backends::gpu::SetDeviceId(device_id); }

gpuError_t GpuGetLastError() { return pten::backends::gpu::GpuGetLastError(); }

void GpuStreamSync(gpuStream_t stream) {
  pten::backends::gpu::GpuStreamSync(stream);
}

void GpuDestroyStream(gpuStream_t stream) {
  pten::backends::gpu::GpuDestroyStream(stream);
}

void GpuDeviceSync() { pten::backends::gpu::GpuDeviceSync(); }

void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    gpuMemcpyKind kind, gpuStream_t stream) {
  pten::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
}

void GpuMemcpySync(void *dst, const void *src, size_t count,
                   gpuMemcpyKind kind) {
  pten::backends::gpu::GpuMemcpySync(dst, src, count, kind);
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, gpuStream_t stream) {
  pten::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device,
                                          count, stream);
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
  pten::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device,
                                         count);
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
  pten::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
}

456 457
}  // namespace platform
}  // namespace paddle