prepared_operator.h 27.2 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22
#include "paddle/fluid/framework/convert_utils.h"
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/type_defs.h"
28
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
29 30
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
31
#include "paddle/fluid/imperative/var_helper.h"
32
#include "paddle/phi/core/dense_tensor.h"
33
#include "paddle/phi/core/kernel_context.h"
34
#include "paddle/phi/core/selected_rows.h"
35

36 37
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
38 39 40 41 42
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

43 44 45 46 47 48 49 50
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
51
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
52 53 54 55 56 57 58 59 60 61 62 63 64
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
65
template <>
66 67
void SetForwardDataTypeOfGradVar<egr::EagerVariable>(
    const std::shared_ptr<egr::EagerVariable>& var) {
J
Jiabin Yang 已提交
68 69 70 71 72
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
73

74
template <typename VarType>
75
std::shared_ptr<NameVarMap<VarType>> PrepareData(
76 77
    const framework::OperatorWithKernel& op,
    const NameVarMap<VarType>& ins,
78
    const framework::OpKernelType& expected_kernel_key) {
79 80 81
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
82 83 84
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
85
      if (tensor && tensor->IsInitialized() && (tensor->memory_size() != 0)) {
86 87 88 89 90
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
91 92 93
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
94 95
          VLOG(3) << GetNameFromVar(template_var)
                  << " memory size is: " << tensor->memory_size();
J
Jiabin Yang 已提交
96
          if (CheckCachedKey(template_var, expected_kernel_key)) {
97 98 99
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
100
                GetCachedValue(template_var, expected_kernel_key);
101 102 103
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
104 105

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
106 107 108
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
109 110
            SetTensorToVariable(
                cache_var->Var(), *tensor, tmp_var->MutableVar());
111 112
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
113
            framework::Tensor out;
114 115
            TransformData(
                expected_kernel_key, kernel_type_for_var, *tensor, &out);
116 117 118 119 120 121 122 123
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
124 125 126
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
127 128
              SetTensorToVariable(
                  template_var->Var(), out, tmp_var->MutableVar());
129
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
130
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
131 132 133 134 135 136
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
137 138
              SetTensorToVariable(
                  template_var->Var(), out, template_var->MutableVar());
139
            }
140
          }
141 142 143 144
        }
      }
    }
  }
145
  return tmp_ins_ptr;
146 147
}

J
Jiabin Yang 已提交
148 149
class PreparedOp {
 public:
150 151
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
152
             const framework::OpKernelType& kernel_type,
153
             const framework::OperatorWithKernel::OpKernelFunc& func,
154 155
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
156
             platform::DeviceContext* dev_ctx);
157

158 159 160
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
161 162 163
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
             phi::KernelSignature&& kernel_signature,
164 165
             const phi::Kernel& phi_kernel,
             platform::DeviceContext* dev_ctx);
166

167 168 169 170
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
171
                            const framework::AttributeMap& attrs,
172
                            const framework::AttributeMap& default_attrs);
173 174 175 176 177

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
178
                            const framework::AttributeMap& attrs,
179
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
180

181 182
  static PreparedOp Prepare(const NameVarMap<egr::EagerVariable>& ins,
                            const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
183 184 185 186 187
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

188 189
  void Run(const NameVarMap<VarBase>& in,
           const NameVarMap<VarBase>& out,
190 191
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
192 193 194

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
195 196
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
197

198 199
  void Run(const NameVarMap<egr::EagerVariable>& ins,
           const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
200 201 202
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

203 204
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
205 206 207
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
208
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
209 210
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
211
  // NOTE(chenweihang): Similar op members are used to adapt to
212
  // new phi kernel, if there is a better design in the future,
213
  // we may polish the implementation here
214
  bool run_phi_kernel_{false};
L
Liu-xiandong 已提交
215
  bool run_kp_kernel_{false};
216 217 218 219
  const phi::ArgumentMappingFn* arg_map_fn_;
  const phi::KernelSignature* default_kernel_signature_;
  phi::KernelSignature kernel_signature_;
  const phi::Kernel& phi_kernel_;
220 221 222 223

  static const phi::KernelFactory& phi_kernel_factory;
  static const phi::OpUtilsMap& phi_op_utils_map;
  static const phi::DefaultKernelSignatureMap& default_phi_kernel_sig_map;
J
Jiabin Yang 已提交
224 225
};

226
const inline framework::Attribute* GetAttr(
227
    const framework::AttributeMap& attrs,
228 229
    const framework::AttributeMap& default_attrs,
    const std::string& name) {
230 231 232 233 234 235
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
236 237 238 239
  if (found) {
    return &it->second;
  }
  return nullptr;
240 241 242
}

template <typename VarType>
243 244 245 246 247 248 249 250
void BuildDygraphPhiKernelContext(const phi::KernelSignature& kernel_signature,
                                  const phi::Kernel& phi_kernel,
                                  const NameVarMap<VarType>& ins,
                                  const NameVarMap<VarType>& outs,
                                  const framework::AttributeMap& attrs,
                                  const framework::AttributeMap& default_attrs,
                                  platform::DeviceContext* dev_ctx,
                                  phi::KernelContext* kernel_ctx) {
251 252
  kernel_ctx->SetDeviceContext(dev_ctx);

253 254 255
  const auto& input_names = kernel_signature.input_names;
  const auto& attr_names = kernel_signature.attr_names;
  const auto& output_names = kernel_signature.output_names;
256

257 258 259
  auto& input_defs = phi_kernel.args_def().input_defs();
  auto& output_defs = phi_kernel.args_def().output_defs();
  auto& attr_defs = phi_kernel.args_def().attribute_defs();
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  PADDLE_ENFORCE_EQ(
      input_names.size(),
      input_defs.size(),
      platform::errors::InvalidArgument(
          "Op %s: the size of inputs_args names (%d) must be equal to "
          "the size of kernel input_defs (%d).",
          kernel_signature.name,
          input_names.size(),
          input_defs.size()));

  PADDLE_ENFORCE_EQ(
      output_names.size(),
      output_defs.size(),
      platform::errors::InvalidArgument(
          "Op %s: the size of outputs_args names (%d) must be equal to "
          "the size of kernel output_defs (%d).",
          kernel_signature.name,
          output_names.size(),
          output_defs.size()));

  PADDLE_ENFORCE_EQ(
      attr_names.size(),
      attr_defs.size(),
      platform::errors::InvalidArgument(
          "Op %s: the size of attribute_args names (%d) must be equal "
          "to the size of kernel attribute_defs (%d).",
          kernel_signature.name,
          attr_names.size(),
          attr_defs.size()));
290 291

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
292
    auto it = ins.find(input_names[i]);
293 294 295

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

F
From00 已提交
296 297
    if (it == ins.end()) {
      if (LIKELY(input_defs[i].type_index ==
298
                 std::type_index(typeid(paddle::optional<phi::DenseTensor>)))) {
F
From00 已提交
299 300 301 302
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
303
      } else if (input_defs[i].type_index ==
304 305
                 std::type_index(typeid(
                     paddle::optional<std::vector<const phi::DenseTensor*>>))) {
306 307 308 309
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
F
From00 已提交
310 311 312 313 314
      } else {
        PADDLE_THROW(phi::errors::NotFound(
            "Can not find input variable '%s' for %s OP, please check whether "
            "the name setting in OpArgumentMapping is consistent with that in "
            "OpMaker.",
315 316
            input_names[i],
            kernel_signature.name));
F
From00 已提交
317
      }
318
    }
F
From00 已提交
319

320
    auto& ins_vector = it->second;
321 322 323
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
324
      const phi::TensorBase* tensor_in = nullptr;
325
      auto& var = ins_vector[offset]->Var();
326 327
      if (var.template IsType<phi::DenseTensor>()) {
        tensor_in = &(var.template Get<phi::DenseTensor>());
328
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
329 330
      } else if (var.template IsType<phi::SelectedRows>()) {
        tensor_in = &(var.template Get<phi::SelectedRows>());
331 332
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var.template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
333
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
334 335 336 337 338 339
        auto& tensor_array = var.template Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        kernel_ctx->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
340 341 342 343
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var.Type())));
344
      }
345
    }
346
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
347
  }
348
  VLOG(6) << "BuildDygraphPhiKernelContext: Inputs parsing completed.";
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
369

370
      phi::TensorBase* tensor_out = nullptr;
371
      auto* var = outs_vector[offset]->MutableVar();
372 373 374
      if (var) {
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
375
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
376 377
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
378 379
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
380
          paddle::small_vector<phi::TensorBase*> tensor_vector;
381 382 383 384 385 386 387
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          kernel_ctx->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
388 389 390 391 392
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
393 394
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
395
      }
396 397 398
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }
399
  VLOG(6) << "BuildDygraphPhiKernelContext: Outputs parsing completed.";
400 401

  for (size_t i = 0; i < attr_names.size(); ++i) {
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    VLOG(6) << "BuildDygraphPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto* attr_ptr = GetAttr(attrs, default_attrs, attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_ptr) {
          // scalar is in the attribute
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::FLOAT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
              break;
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
              break;
            case framework::proto::AttrType::STRING:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
          auto& ins_vector = ins.at(attr_names[i]);
431
          kernel_ctx->EmplaceBackAttr(std::move(
432
              experimental::MakePhiScalarFromVar(ins_vector[0]->Var())));
433
        }
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::INTS:
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
              break;
            case framework::proto::AttrType::LONGS:
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
              break;
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
              break;
            case framework::proto::AttrType::LONG:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::IntArray(&BOOST_GET_CONST(int64_t, attr), 1)));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
          auto& ins_vector = ins.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            kernel_ctx->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(ins_vector[0]->Var())));
          } else {  // ShapeTensorList
            std::vector<framework::Variable*> variables;
            variables.reserve(ins_vector.size());
            for (const auto& var_base : ins_vector) {
              variables.push_back(var_base->MutableVar());
            }
            kernel_ctx->EmplaceBackAttr(
                std::move(experimental::MakePhiIntArrayFromVarList(variables)));
474
          }
475
        }
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (AttrTypeID(attr)) {
          case framework::proto::AttrType::INTS: {
            const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::LONGS: {
            const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOATS: {
            const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOAT64S: {
            const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::BOOLEANS: {
            const auto& vec = BOOST_GET_CONST(std::vector<bool>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
                attr_names[i]));
535
        }
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
      } break;
      default: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
            break;
          case phi::AttributeType::INT32:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
            break;
          case phi::AttributeType::BOOL:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
            break;
          case phi::AttributeType::INT64:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
            break;
          case phi::AttributeType::INT32S:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<int>, attr));
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
                    BOOST_GET_CONST(int, attr)));
            kernel_ctx->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            kernel_ctx->EmplaceBackAttr(
                std::move(BOOST_GET_CONST(std::string, attr)));
            break;
          case phi::AttributeType::INT64S: {
            switch (AttrTypeID(attr)) {
              case framework::proto::AttrType::LONGS:
                kernel_ctx->EmplaceBackAttr(
                    BOOST_GET_CONST(std::vector<int64_t>, attr));
                break;
              case framework::proto::AttrType::INTS: {
                const auto& vector_int_attr =
                    BOOST_GET_CONST(std::vector<int>, attr);
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                kernel_ctx->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
          } break;
          case phi::AttributeType::FLOAT32S:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<float>, attr));
            break;
          case phi::AttributeType::STRINGS:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<std::string>, attr));
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
605 606 607 608
        }
      }
    }
  }
609
  VLOG(6) << "BuildDygraphPhiKernelContext: Attributes parsing completed.";
610 611 612
}

template <typename VarType>
613 614
void PreparePhiData(const phi::Kernel& phi_kernel,
                    const phi::KernelSignature& kernel_signature,
615
                    const NameVarMap<VarType>& ins) {
616 617
  const auto& input_names = kernel_signature.input_names;
  auto& input_defs = phi_kernel.args_def().input_defs();
618

619 620
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
621 622 623
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
624 625
                        input_names.size(),
                        input_defs.size()));
626 627 628

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
629 630
    auto iter = ins.find(input_names[i]);
    if (iter == ins.end()) {
H
hong 已提交
631 632
      continue;
    }
633
    auto& ins_vector = iter->second;
634 635

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
636
      auto& var = ins_vector[offset];
J
Jiabin Yang 已提交
637
      const auto* tensor_in = GetTensorFromVar(var->Var());
638 639
      if (tensor_in && tensor_in->IsInitialized() &&
          (tensor_in->memory_size() != 0)) {
640 641 642
        if (in_def.backend == phi::Backend::ALL_BACKEND) {
          continue;
        }
643 644 645 646
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if (in_def.backend == tensor_backend ||
            (in_def.backend == phi::Backend::GPUDNN &&
             tensor_backend == phi::Backend::GPU)) {
647 648 649
          continue;
        }

650 651
        auto expected_place = phi::TransToPhiPlace(in_def.backend);

652
        VLOG(3) << "Phi Transform Variable " << input_names[i] << " from "
653 654 655 656 657
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
658
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
659 660 661 662 663
      }
    }
  }
}

J
Jiabin Yang 已提交
664 665
}  // namespace imperative
}  // namespace paddle