test_attention_lstm_op.py 6.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
from test_fusion_lstm_op import fc, ACTIVATION
T
tensor-tang 已提交
21
from test_softmax_op import stable_softmax
T
tensor-tang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35


def attention_lstm(
        x,  # T x M
        lod,  # 1 x N
        h0,  # N x D
        c0,  # N x D
        fcws,  # (M+D) x 1, 1x1
        fcbs,  # 1 x 1, 1x1
        w,  # (M+D) x 4D
        b,  # 1 x 4D
        act_gate,
        act_cell,
        act_cand):
T
tensor-tang 已提交
36 37 38 39

    T = sum(lod[0])
    N = len(lod[0])
    M = x.shape[1]
M
minqiyang 已提交
40
    D = b.shape[1] // 4
T
tensor-tang 已提交
41 42 43 44 45 46 47 48
    assert T == x.shape[0]
    assert len(fcws) == len(fcbs)
    hidden = []
    cell = []

    start_offset = 0
    for bid in range(N):
        seq_len = lod[0][bid]
T
tensor-tang 已提交
49 50
        xi = np.copy(x[start_offset:start_offset + seq_len, :]).reshape(seq_len,
                                                                        M)
T
tensor-tang 已提交
51 52 53 54 55
        prev_cell = np.copy(c0[bid]).reshape([1, D])
        prev_hidden = np.copy(h0[bid]).reshape([1, D])
        for step in range(seq_len):
            expanded_cell = np.repeat(prev_cell, seq_len, axis=0)
            tmp = np.concatenate((xi, expanded_cell), axis=1)
T
tensor-tang 已提交
56
            assert tmp.shape[0] == seq_len
T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65
            assert tmp.shape[1] == M + D
            for fcid in range(len(fcbs)):
                tmp = fc(tmp, fcws[fcid], fcbs[fcid])
                tmp = ACTIVATION['relu'](tmp)
            tmp = np.reshape(tmp, (1, seq_len))
            tmp = stable_softmax(tmp).reshape(seq_len, 1)
            lstmx = xi * tmp  # seq * M
            lstmx = np.sum(lstmx.reshape(seq_len, M), axis=0).reshape([1, M])
            lstmin = np.concatenate((prev_hidden, lstmx), axis=1)
T
tensor-tang 已提交
66
            lstmout = fc(lstmin, w, b).reshape([1, 4 * D])
T
tensor-tang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

            g_f, g_i, g_o, cand = np.split(lstmout, 4, axis=1)
            g_f = act_gate(g_f).reshape([1, D])
            g_i = act_gate(g_i).reshape([1, D])
            g_o = act_gate(g_o).reshape([1, D])
            cand = act_cand(cand).reshape([1, D])

            cell_t = (prev_cell * g_f) + (g_i * cand)
            hidden_t = g_o * act_cell(cell_t)

            hidden.append(hidden_t.flatten())
            cell.append(cell_t.flatten())

            prev_cell = cell_t.reshape([1, D])
            prev_hidden = hidden_t.reshape([1, D])

        start_offset += seq_len

    hidden = np.array(hidden).astype('float32').reshape([T, D])
    cell = np.array(cell).astype('float32').reshape([T, D])
T
tensor-tang 已提交
87 88 89 90 91
    return hidden, cell


class TestAttentionLSTMOp(OpTest):
    def set_conf(self):
T
tensor-tang 已提交
92
        pass
T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

    def setUp(self):
        self.op_type = 'attention_lstm'
        self.lod = [[3]]
        self.M = 30
        self.D = 15
        self.has_initial_hidden = True
        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
        self.set_conf()

        T = sum(self.lod[0])
        bs = len(self.lod[0])

        x = np.random.normal(size=(T, self.M)).astype('float32')
        c0 = np.random.normal(size=(bs, self.D)).astype('float32')
        if self.has_initial_hidden:
            h0 = np.random.normal(size=(bs, self.D)).astype('float32')
        else:
            h0 = np.zeros((bs, self.D)).astype('float32')

        fcw1 = np.random.normal(size=(self.M + self.D, 1)).astype('float32')
        fcb1 = np.random.normal(size=(1, 1)).astype('float32')
        fcw2 = np.random.normal(size=(1, 1)).astype('float32')
        fcb2 = np.random.normal(size=(1, 1)).astype('float32')

        # lstm weight and bias
        w = np.random.normal(size=(self.M + self.D,
                                   self.D * 4)).astype('float32')
        b = np.random.normal(size=(1, self.D * 4)).astype('float32')

        h, c = attention_lstm(x, self.lod, h0, c0, [fcw1, fcw2], [fcb1, fcb2],
T
tensor-tang 已提交
126
                              w, b, ACTIVATION[self.act_gate],
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
                              ACTIVATION[self.act_cell],
                              ACTIVATION[self.act_cand])

        self.inputs = {
            'X': (x, self.lod),
            'C0': c0,
            'AttentionWeight': fcw1,
            'AttentionBias': fcb1,
            'AttentionScalar': fcw2,
            'AttentionScalarBias': fcb2,
            'LSTMWeight': w,
            'LSTMBias': b
        }

        if self.has_initial_hidden:
            self.inputs['H0'] = h0

        self.outputs = {
            'Hidden': (h, self.lod),
            'Cell': (c, self.lod),
        }
        self.attrs = {
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
            'candidate_activation': self.act_cand
        }

    def test_check_output(self):
        self.check_output()


class TestAttentionOpNonInit(TestAttentionLSTMOp):
    def set_conf(self):
        self.has_initial_hidden = False


163 164 165 166 167 168 169 170 171
class TestAttentionOpAct(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 3
        self.D = 2
        self.act_gate = 'relu'
        self.act_cell = 'tanh'
        self.act_cand = 'sigmoid'


T
tensor-tang 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
class TestAttentionOpMD1(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 36
        self.D = 8


class TestAttentionOpMD2(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 8
        self.D = 8


class TestAttentionOpMD3(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 15
        self.D = 30


class TestAttentionOpBS1(TestAttentionLSTMOp):
    def set_conf(self):
        self.lod = [[5]]
        self.M = 16
        self.D = 32


class TestAttentionOpBS2(TestAttentionLSTMOp):
    def set_conf(self):
        self.lod = [[3, 6]]


class TestAttentionOpBS5(TestAttentionLSTMOp):
    def set_conf(self):
        self.lod = [[3, 2, 4, 7, 5]]


if __name__ == '__main__':
    unittest.main()