gpu_info.cc 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include <cstdlib>
#include <mutex>
#include <vector>

#include "gflags/gflags.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
#include "paddle/fluid/memory/malloc.h"
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"

DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_string(selected_gpus);
DECLARE_uint64(gpu_memory_limit_mb);

constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetGPUDeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
  static RecordedGpuMallocHelper *Instance(int dev_id) {
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
  gpuError_t Malloc(void **ptr, size_t size) {
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto result = hipMalloc(ptr, size);
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
    auto result = cudaMalloc(ptr, size);
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
  }

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
  static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;
};  // NOLINT

std::once_flag RecordedGpuMallocHelper::once_flag_;
std::vector<std::unique_ptr<RecordedGpuMallocHelper>>
    RecordedGpuMallocHelper::instances_;

gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(ptr, size);
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

}  // namespace platform
}  // namespace paddle