test_multi_dot_op.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
from numpy.linalg import multi_dot
from op_test import OpTest
import paddle

paddle.enable_static()


#the unittest of multi_dot
#compare the result of paddle multi_dot and numpy multi_dot
class TestMultiDotOp(OpTest):
    def setUp(self):
        self.op_type = "multi_dot"
        self.dtype = self.get_dtype()
        self.get_inputs_and_outputs()

    def get_dtype(self):
        return "float64"

    def get_inputs_and_outputs(self):
        self.A = np.random.random((2, 8)).astype(self.dtype)
        self.B = np.random.random((8, 4)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
        self.outputs = {'Out': multi_dot([self.A, self.B])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
        self.check_grad(['x1'], 'Out')


#(A*B)*C
class TestMultiDotOp3Mat(TestMultiDotOp):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((2, 10)).astype(self.dtype)
        self.B = np.random.random((10, 4)).astype(self.dtype)
        self.C = np.random.random((4, 3)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')


#A*(B*C)
class TestMultiDotOp3Mat2(TestMultiDotOp):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((3, 4)).astype(self.dtype)
        self.B = np.random.random((4, 8)).astype(self.dtype)
        self.C = np.random.random((8, 2)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')


class TestMultiDotOp4Mat(TestMultiDotOp):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((8, 6)).astype(self.dtype)
        self.B = np.random.random((6, 3)).astype(self.dtype)
        self.C = np.random.random((3, 4)).astype(self.dtype)
        self.D = np.random.random((4, 5)).astype(self.dtype)
        self.inputs = {
            'X':
            [('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
        }
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')
        self.check_grad(['x3'], 'Out')


class TestMultiDotOpFirst1D(TestMultiDotOp):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((4)).astype(self.dtype)
        self.B = np.random.random((4, 3)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
        self.outputs = {'Out': multi_dot([self.A, self.B])}


class TestMultiDotOp3MatFirst1D(TestMultiDotOp3Mat):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((4)).astype(self.dtype)
        self.B = np.random.random((4, 3)).astype(self.dtype)
        self.C = np.random.random((3, 3)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}


class TestMultiDotOp4MatFirst1D(TestMultiDotOp4Mat):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((4)).astype(self.dtype)
        self.B = np.random.random((4, 3)).astype(self.dtype)
        self.C = np.random.random((3, 4)).astype(self.dtype)
        self.D = np.random.random((4, 5)).astype(self.dtype)
        self.inputs = {
            'X':
            [('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
        }
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}


class TestMultiDotOpLast1D(TestMultiDotOp):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((3, 6)).astype(self.dtype)
        self.B = np.random.random((6)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
        self.outputs = {'Out': multi_dot([self.A, self.B])}


class TestMultiDotOp3MatLast1D(TestMultiDotOp3Mat):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((2, 4)).astype(self.dtype)
        self.B = np.random.random((4, 3)).astype(self.dtype)
        self.C = np.random.random((3)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')


class TestMultiDotOp4MatLast1D(TestMultiDotOp4Mat):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((2, 3)).astype(self.dtype)
        self.B = np.random.random((3, 2)).astype(self.dtype)
        self.C = np.random.random((2, 3)).astype(self.dtype)
        self.D = np.random.random((3)).astype(self.dtype)
        self.inputs = {
            'X':
            [('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
        }
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}


class TestMultiDotOpFirstAndLast1D(TestMultiDotOp):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((4, )).astype(self.dtype)
        self.B = np.random.random((4)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
        self.outputs = {'Out': multi_dot([self.A, self.B])}


class TestMultiDotOp3MatFirstAndLast1D(TestMultiDotOp3Mat):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((6, )).astype(self.dtype)
        self.B = np.random.random((6, 4)).astype(self.dtype)
        self.C = np.random.random((4)).astype(self.dtype)
        self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}


class TestMultiDotOp4MatFirstAndLast1D(TestMultiDotOp4Mat):
    def get_inputs_and_outputs(self):
        self.A = np.random.random((3, )).astype(self.dtype)
        self.B = np.random.random((3, 4)).astype(self.dtype)
        self.C = np.random.random((4, 2)).astype(self.dtype)
        self.D = np.random.random((2)).astype(self.dtype)
        self.inputs = {
            'X':
            [('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
        }
        self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}


#####python API test#######
class TestMultiDotOpError(unittest.TestCase):
    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            # The inputs type of multi_dot must be list matrix.
            input1 = 12
201 202
            self.assertRaises(TypeError, paddle.linalg.multi_dot,
                              [input1, input1])
203 204 205 206

            # The inputs dtype of multi_dot must be float64, float64 or float16.
            input2 = paddle.static.data(
                name='input2', shape=[10, 10], dtype="int32")
207 208
            self.assertRaises(TypeError, paddle.linalg.multi_dot,
                              [input2, input2])
209 210 211

            # the number of tensor must be larger than 1
            x0 = paddle.static.data(name='x0', shape=[3, 2], dtype="float64")
212
            self.assertRaises(ValueError, paddle.linalg.multi_dot, [x0])
213 214 215 216

            #the first tensor must be 1D or 2D
            x1 = paddle.static.data(name='x1', shape=[3, 2, 3], dtype="float64")
            x2 = paddle.static.data(name='x2', shape=[3, 2], dtype="float64")
217
            self.assertRaises(ValueError, paddle.linalg.multi_dot, [x1, x2])
218 219 220 221

            #the last tensor must be 1D or 2D
            x3 = paddle.static.data(name='x3', shape=[3, 2], dtype="float64")
            x4 = paddle.static.data(name='x4', shape=[3, 2, 2], dtype="float64")
222
            self.assertRaises(ValueError, paddle.linalg.multi_dot, [x3, x4])
223 224 225 226 227

            #the tensor must be 2D, except first and last tensor
            x5 = paddle.static.data(name='x5', shape=[3, 2], dtype="float64")
            x6 = paddle.static.data(name='x6', shape=[2], dtype="float64")
            x7 = paddle.static.data(name='x7', shape=[2, 2], dtype="float64")
228
            self.assertRaises(ValueError, paddle.linalg.multi_dot, [x5, x6, x7])
229 230 231 232 233 234 235 236


class APITestMultiDot(unittest.TestCase):
    def test_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x0 = paddle.static.data(name='x0', shape=[3, 2], dtype="float64")
            x1 = paddle.static.data(name='x1', shape=[2, 3], dtype='float64')
237
            result = paddle.linalg.multi_dot([x0, x1])
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
            exe = paddle.static.Executor(paddle.CPUPlace())
            data1 = np.random.rand(3, 2).astype("float64")
            data2 = np.random.rand(2, 3).astype("float64")
            np_res = exe.run(feed={'x0': data1,
                                   'x1': data2},
                             fetch_list=[result])
            expected_result = np.linalg.multi_dot([data1, data2])

        self.assertTrue(
            np.allclose(
                np_res, expected_result, atol=1e-5),
            "two value is\
            {}\n{}, check diff!".format(np_res, expected_result))

    def test_dygraph_without_out(self):
        paddle.disable_static()
        device = paddle.CPUPlace()
        input_array1 = np.random.rand(3, 4).astype("float64")
        input_array2 = np.random.rand(4, 3).astype("float64")
        data1 = paddle.to_tensor(input_array1)
        data2 = paddle.to_tensor(input_array2)
259
        out = paddle.linalg.multi_dot([data1, data2])
260 261 262 263 264 265
        expected_result = np.linalg.multi_dot([input_array1, input_array2])
        self.assertTrue(np.allclose(expected_result, out.numpy()))


if __name__ == "__main__":
    unittest.main()