device_context.h 12.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/temporary_allocator.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
26
#if !defined(__APPLE__) && !defined(_WIN32)
W
Wu Yi 已提交
27
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
28
#endif
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
30
#endif
D
dzhwinter 已提交
31

T
tensor-tang 已提交
32
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
33
#include "mkldnn.hpp"
T
tensor-tang 已提交
34 35
#endif

36 37
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
38 39
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
43
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
44 45 46 47

namespace paddle {
namespace platform {

C
chengduo 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*! \brief device temporary allocator singleton.
 *
 * Some operator needs temporary memory during computation, for example,
 * conv_gemm, which needs use col to store the result of im2col. If we
 * create a stack memory which is used by CUDA Kernel, before the
 * Computation(...) returns, we should add ctx->Wait(), because the
 * execution of CUDA is async, if there doesn't have ctx->Wait(),
 * the temporary memory will be released before the CUDA Kernel uses
 * it.
 *
 * DeviceTemporaryAllocator is a singleton, which contains a
 * `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
 * contains a temp_allocation_queue which is used to store the temporary
 * allocations. The allocation, which is allocated by TemporaryAllocator,
 * is a unique_ptr,  and when it is not held by any variable, it will be
 * pushed into the temp_allocation_queue. There are two opportunities to free
 * the allocations of temp_allocation_queue:
 *  - when the Stream calls cudaStreamSynchronize;
 *  - when the allocation size of opportunities exceeds a certain threshold
67
 *    (defined by FLAGS_limit_of_tmp_allocation).
C
chengduo 已提交
68 69
 *
 * */
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class DeviceTemporaryAllocator {
 public:
  static DeviceTemporaryAllocator& Instance() {
    PADDLE_ENFORCE_NOT_NULL(allocators,
                            "Need to Create DeviceTemporaryAllocator first!");
    return *allocators;
  }

  static DeviceTemporaryAllocator& Init() {
    if (allocators == nullptr) {
      allocators = new DeviceTemporaryAllocator();
    }
    return *allocators;
  }

/*! \brief  Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
  platform::TemporaryAllocator& Get(const platform::Place& place,
                                    const cudaStream_t& stream);
#endif
  template <typename DeviceContext>
  platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);

  platform::TemporaryAllocator& Get(const platform::Place& place);

 private:
  DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}

  static DeviceTemporaryAllocator* allocators;

  platform::TemporaryAllocator cpu_allocator_;

#ifdef PADDLE_WITH_CUDA
  std::map<std::pair<platform::Place, cudaStream_t>,
           std::unique_ptr<platform::TemporaryAllocator>>
      device_allocator_;
#endif

  std::mutex mtx_;

  DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};

Q
QI JUN 已提交
113 114 115
class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
116
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
117

118
  virtual void Wait() const {}
Q
QI JUN 已提交
119 120
};

Q
qijun 已提交
121 122
class CPUDeviceContext : public DeviceContext {
 public:
123
  CPUDeviceContext();
Q
qijun 已提交
124
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
125

126
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
127

L
liaogang 已提交
128
  Place GetPlace() const override;
Y
Yu Yang 已提交
129

Q
qijun 已提交
130
 private:
D
dzhwinter 已提交
131
  CPUPlace place_;
Q
qijun 已提交
132
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
133 134
};

Y
Yang Yu 已提交
135 136 137 138 139 140 141 142
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

143
#ifdef PADDLE_WITH_CUDA
144

Q
qijun 已提交
145
class EigenCudaStreamDevice;
S
sneaxiy 已提交
146 147 148 149 150 151 152 153 154 155 156 157
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
  ~CudnnHolder();
  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

 private:
  friend class CudnnWorkspaceHandle;
  void ReallocateWorkspace(size_t required_workspace_len);

  template <typename Callback>
  void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
Y
Yu Yang 已提交
158
    if (required_workspace_len > WorkspaceSize()) {
S
sneaxiy 已提交
159 160
      ReallocateWorkspace(required_workspace_len);
    }
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    cudnn_func(WorkspacePtr());
  }

  inline void* WorkspacePtr() {
    if (workspace_) {
      return workspace_->ptr();
    } else {
      return nullptr;
    }
  }

  inline size_t WorkspaceSize() {
    if (workspace_) {
      return workspace_->size();
    } else {
      return 0;
    }
S
sneaxiy 已提交
178 179 180 181 182
  }

  std::mutex& Mutex() { return mtx_; }

  cudnnHandle_t cudnn_handle_;
Y
Yu Yang 已提交
183
  memory::AllocationPtr workspace_;
S
sneaxiy 已提交
184 185 186 187 188 189

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};
D
dongzhihong 已提交
190

S
sneaxiy 已提交
191 192 193 194
class CudnnWorkspaceHandle {
 public:
  /*! \brief The lock would not be acquired when constructor calls.
   *  The lock would be acquired when RunFunc() is called first time. */
S
sneaxiy 已提交
195
  inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
S
sneaxiy 已提交
196 197 198

  /*! \brief Thread which call RunFunc() would acquire the lock first
   *  before invoking cudnn functions. */
S
sneaxiy 已提交
199 200 201 202 203 204 205 206
  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
  }
S
sneaxiy 已提交
207

S
sneaxiy 已提交
208 209
  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
S
sneaxiy 已提交
210 211 212 213 214 215

 private:
  CudnnHolder* holder_;  // not own
  std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};

216
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
217
 public:
D
dzhwinter 已提交
218
  explicit CUDADeviceContext(CUDAPlace place);
219
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
220

221
  /*! \brief  Wait for all operations completion in the stream. */
222
  void Wait() const override;
Q
QI JUN 已提交
223

224
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
225
  Place GetPlace() const override;
226

K
Kexin Zhao 已提交
227
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
228 229
  int GetComputeCapability() const;

230 231 232
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

233 234 235
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
255

256
  /*! \brief  Return cudnn  handle in the device context. */
257
  cudnnHandle_t cudnn_handle() const;
258

S
sneaxiy 已提交
259 260 261 262 263 264 265 266 267
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
268
  /*! \brief  Return cuda stream in the device context. */
269
  cudaStream_t stream() const;
Q
QI JUN 已提交
270

Q
qingqing01 已提交
271
#if !defined(_WIN32)
Q
qingqing01 已提交
272 273 274 275 276
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
277
#endif
Q
qingqing01 已提交
278

Y
Yu Yang 已提交
279 280 281 282 283 284
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
    PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
  }

S
sneaxiy 已提交
285 286 287 288 289
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
290
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
291

Q
QI JUN 已提交
292
 private:
D
dzhwinter 已提交
293
  CUDAPlace place_;
Q
QI JUN 已提交
294

N
nhzlx 已提交
295
  mutable std::once_flag init_cudnn_;
296

Q
qijun 已提交
297
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
298
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
299
  mutable std::unique_ptr<CudnnHolder> cudnn_holder_;
300
  cudaStream_t stream_;
301 302 303

  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
304

Q
qingqing01 已提交
305
#if !defined(_WIN32)
Q
qingqing01 已提交
306 307 308 309 310 311
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
312
#endif
Q
qingqing01 已提交
313

C
chengduo 已提交
314 315 316 317 318
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
319

S
fix bug  
sneaxiy 已提交
320
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
321
  std::unique_ptr<StreamCallbackManager> callback_manager_;
322
  CudnnHolder* cudnn_holder() const;
323

324
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
325
};
Q
qijun 已提交
326

Y
Yang Yu 已提交
327 328
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
329
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
330 331
};

C
chengduoZH 已提交
332
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
333 334 335 336 337 338
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
339

C
chengduoZH 已提交
340 341 342 343 344 345 346 347 348 349 350
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
351
#endif
Q
qijun 已提交
352

T
tensor-tang 已提交
353
#ifdef PADDLE_WITH_MKLDNN
S
Sylwester Fraczek 已提交
354 355 356 357 358 359
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<KeyBlob>>;

void set_cur_thread_id(int);
int get_cur_thread_id(void);

T
tensor-tang 已提交
360 361 362 363 364
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
365
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
366

367 368
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
369

370 371
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
372 373

 private:
374
  mkldnn::engine engine_;
375 376
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
377 378 379
};
#endif

D
dzhwinter 已提交
380 381 382 383 384
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
385
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
386 387 388 389 390
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
391
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
392 393 394 395 396 397 398
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
399
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
400

Y
Yang Yu 已提交
401 402 403 404 405 406 407
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

408 409
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
410 411
 private:
  static DeviceContextPool* pool;
412 413
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
414 415 416
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
417 418
}  // namespace platform
}  // namespace paddle