op_teller.cc 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16
#include <bitset>
17
#include "paddle/fluid/framework/block_desc.h"
18
#include "paddle/fluid/framework/data_layout.h"
19

W
wanghuancoder 已提交
20 21 22 23 24 25
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

26 27 28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
32 33 34
  SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
    teller_set.insert("relu6");
35
    teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
36
    teller_set.insert("clip");
37 38
    int8_teller_set.insert("relu6");
    int8_teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
39
    int8_teller_set.insert("clip");
40 41 42 43 44
#endif
#if IS_TRT_VERSION_GE(6000)
    teller_set.insert("fused_embedding_eltwise_layernorm");
    teller_set.insert("multihead_matmul");
    teller_set.insert("skip_layernorm");
45
    teller_set.insert("slice");
C
ceci3 已提交
46
    int8_teller_set.insert("fused_embedding_eltwise_layernorm");
47 48 49
    int8_teller_set.insert("multihead_matmul");
    int8_teller_set.insert("skip_layernorm");
    int8_teller_set.insert("slice");
C
ceci3 已提交
50 51 52
#endif
#if IS_TRT_VERSION_GE(7130)
    teller_set.insert("group_norm");
W
Wangzheee 已提交
53
#endif
W
wenbin 已提交
54 55 56
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
#endif
W
wenbin 已提交
57
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
58 59
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
60 61
#endif
  }
62

63 64 65 66 67 68 69
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
70 71 72
  }

 private:
73
  // use this set for no calib int8.
74 75
  std::unordered_set<std::string> int8_teller_set{"mul",
                                                  "conv2d",
C
ceci3 已提交
76 77
                                                  "matmul",
                                                  "stack",
78
                                                  "conv2d_fusion",
79 80 81 82
                                                  "pool2d",
                                                  "relu",
                                                  "depthwise_conv2d",
                                                  "softmax",
83
                                                  "sigmoid",
84 85 86 87
                                                  "batch_norm",
                                                  "elementwise_add",
                                                  "leaky_relu",
                                                  "fc",
88 89 90
                                                  "concat",
                                                  "scale",
                                                  "elementwise_mul",
91 92
                                                  "conv2d_transpose",
                                                  "hard_swish"};
W
wenbin 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  std::unordered_set<std::string> teller_set{"mul",
                                             "matmul",
                                             "conv2d",
                                             "conv2d_fusion",
                                             "pool2d",
                                             "relu",
                                             "softmax",
                                             "sigmoid",
                                             "hard_swish",
                                             "depthwise_conv2d",
                                             "batch_norm",
                                             "concat",
                                             "tanh",
                                             "pad",
                                             "elementwise_add",
                                             "elementwise_mul",
                                             "dropout",
                                             "prelu",
                                             "conv2d_transpose",
                                             "depthwise_conv2d_transpose",
                                             "leaky_relu",
                                             "fc",
                                             "shuffle_channel",
                                             "swish",
                                             "split",
                                             "instance_norm",
                                             "gelu",
                                             "layer_norm",
                                             "scale",
                                             "stack",
                                             "transpose2",
                                             "transpose",
                                             "flatten2",
                                             "flatten",
                                             "gather",
                                             "gather_nd",
                                             "yolo_box",
                                             "roi_align",
                                             "affine_channel",
                                             "nearest_interp",
                                             "anchor_generator",
                                             "reduce_sum",
                                             "reduce_mean",
                                             "conv3d",
                                             "conv3d_transpose"};
138 139
};

140 141 142 143
bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
144
  // do not support the op which is labeled the `skip_quant`
145
  if ((desc.HasAttr("namescope") &&
146
       BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
147 148
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
149
    return false;
150

151
  for (auto& teller : tellers_) {
152
    if (op_type == "depthwise_conv2d") {
153
      std::vector<int> paddings =
154
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
155

156
      if (paddings.size() > 2) return false;
157
    }
158

J
JingZhuangzhuang 已提交
159 160 161
    if (op_type == "relu" || op_type == "relu6" || op_type == "tanh" ||
        op_type == "sigmoid") {
      auto* block = desc.Block();
162 163 164 165 166 167
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
168 169 170 171 172 173 174 175
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
176 177 178 179 180 181
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "activation op does not support input's dim is 2 in "
                   "tensorrt static shape, the output shape has diff.";
        return false;
      }
J
JingZhuangzhuang 已提交
182 183
    }

184 185 186
    if (op_type == "pool2d") {
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
187 188
      if (paddings.size() > 2) {
        return false;
189
      }
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
            BOOST_GET_CONST(std::string, desc.GetAttr("pooling_type"));
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
            if (!BOOST_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
              if (desc.HasAttr("exclusive")) {
                if (BOOST_GET_CONST(bool, desc.GetAttr("exclusive"))) {
                  std::vector<int> ksize =
                      BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
230 231 232 233
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
234 235
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
236 237 238 239 240 241 242 243 244 245 246 247
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      if (desc.HasAttr("padding_algorithm")) {
        auto padding_algorithm =
            BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
        if (padding_algorithm == "VALID") {
          return false;
        }
        if (padding_algorithm == "SAME") {
          if (desc.HasAttr("dilations")) {
            const std::vector<int> dilations =
                BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
            if (dilations[0] != 1 || dilations[1] != 1) {
              VLOG(3) << "In Same mode, Dilations must be (1, 1) for "
                         "tensorRT, but given ("
                      << dilations[0] << ", " << dilations[1] << ")";
              return false;
            }
          }
        }
      }

      if (use_no_calib_int8) {
        if (desc.HasAttr("padding_algorithm")) {
          auto padding_algorithm =
              BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
          if (padding_algorithm == "SAME") {
            return false;
          }
        }
      }

278 279 280 281 282 283 284 285 286 287 288
      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

289 290
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
310

W
wenbin 已提交
311
// strides > 1 and 'SAME' is only supported by trt7.0 above
312
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
              BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
                BOOST_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
327 328 329 330
          }
        }
      }
#endif
331 332
    }

333 334
    if (op_type == "matmul") {
      auto* block = desc.Block();
335 336 337 338 339 340
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
341 342 343 344 345
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
346
            VLOG(3)
P
Pei Yang 已提交
347 348
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
349 350 351 352 353
            return false;
          }
        }
      }
    }
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "softmax op does not support input's dim is 2 in tensorrt "
                   "static shape, the output shape has diff.";
        return false;
      }
    }
372
    if (op_type == "group_norm") {
373
      if (!with_dynamic_shape) return false;
374 375 376 377 378 379 380 381 382
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
383 384 385 386
      }
      int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
      if (with_dynamic_shape) {
        if (axis < 0) return false;
387
      } else {
388 389 390 391 392 393
        if (axis <= 0) return false;
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
394
        }
395
      }
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "concat op does not support input's dim is 2 in tensorrt "
                   "static shape, the output shape has diff.";
        return false;
      }
412
    }
413 414 415
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
416 417 418 419 420 421 422 423
      }
      std::vector<int> axis =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;
      if (axis[0] == 0 && axis.size() == 2) return false;

      auto* block = desc.Block();
424 425 426 427 428 429
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      int dims = x_shape.size();
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
452 453
      }
    }
454
    if (op_type == "flatten2" || op_type == "flatten") {
455 456 457
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
458 459
#if IS_TRT_VERSION_GE(7130)
#else
460
        if (with_dynamic_shape) return false;
461
#endif
462 463 464 465
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis != 1) return false;
      }
    }
466

467
    if (op_type == "gather") {
468 469 470 471 472 473 474 475 476
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
477
        auto* block = desc.Block();
478 479 480 481 482 483
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
484 485 486 487 488 489 490
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
      }
491
    }
Z
zlsh80826 已提交
492

493
    if (op_type == "gather_nd") {
494 495
      if (!with_dynamic_shape) return false;

496
      auto* block = desc.Block();
497 498 499 500 501 502
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
503 504 505 506 507 508 509 510 511 512 513 514 515 516
      auto x_var_name = desc.Input("X")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "gather_nd op Index input data type must be int32";
        return false;
      }

      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
517 518 519 520 521 522
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

523 524 525 526 527 528 529
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
    }

530 531 532 533
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
534 535 536 537 538 539
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
540
      if (!has_attrs) return false;
Z
zlsh80826 已提交
541 542
    }

543 544 545 546 547
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW) return false;
548 549

      auto* block = desc.Block();
550 551 552 553 554 555
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
556 557 558 559 560 561
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
562 563
    }

Z
zlsh80826 已提交
564 565 566
    if (op_type == "multiclass_nms") {
      if (with_dynamic_shape) return false;
      auto* block = desc.Block();
567 568 569 570 571 572
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
Z
zlsh80826 已提交
573 574 575 576 577
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
578
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

      auto nms_top_k = BOOST_GET_CONST(int, desc.GetAttr("nms_top_k"));
      if (nms_top_k < 0) return false;

      auto keep_top_k = BOOST_GET_CONST(int, desc.GetAttr("keep_top_k"));
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    if (op_type == "nearest_interp") {
      std::vector<std::string> attrs{"data_layout",   "interp_method",
                                     "align_corners", "scale",
                                     "out_h",         "out_w"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
          BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
      if (interp_method != "nearest") return false;
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

      if (!desc.HasAttr("scale") || !desc.HasAttr("out_h") ||
          !desc.HasAttr("out_w")) {
        return false;
      } else {
        auto scale = BOOST_GET_CONST(float, desc.GetAttr("scale"));
        auto out_h = BOOST_GET_CONST(int, desc.GetAttr("out_h"));
        auto out_w = BOOST_GET_CONST(int, desc.GetAttr("out_w"));
        if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
          if (out_h <= 0) {
            VLOG(3) << "out_h must be greater than 0 if scale is not set.";
            return false;
          }
          if (out_w <= 0) {
            VLOG(3) << "out_w must be greater than 0 if scale is not set.";
            return false;
          }
        }
已提交
634 635 636 637
        if ((scale <= 0.f) && with_dynamic_shape) {
          VLOG(3) << "dynamic shape not support scale not set.";
          return false;
        }
638
      }
639
    }
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

    if (op_type == "roi_align") {
      if (!with_dynamic_shape) return false;

      std::vector<std::string> attrs{"pooled_height", "pooled_width",
                                     "spatial_scale", "sampling_ratio"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;
    }

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "batch_norm") {
      const std::vector<std::string> bn_inputs = {"X", "Bias", "Mean", "Scale",
                                                  "Variance"};
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
689 690 691 692 693 694
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
695 696 697 698 699 700
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "batch_norm op does not support input's dim is 2 in "
                   "tensorrt static shape, the output shape has diff.";
        return false;
      }
717 718 719 720 721 722 723 724 725
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
726 727 728 729 730 731 732 733 734 735 736
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
737 738
      if (!desc.HasAttr("axis")) {
        return false;
739 740 741 742 743 744 745 746 747
      }
      int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
748 749 750 751 752 753
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
        num = BOOST_GET_CONST(int, desc.GetAttr("num"));
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
798 799
        }
      }
800 801 802 803
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
804 805 806 807 808 809
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "split op does not support input's dim is 2 in tensorrt "
                   "static shape. The output shape has diff.";
        return false;
      }
810
    }
811 812 813 814 815 816 817 818
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
819 820 821 822 823 824
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
825 826 827 828 829
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (!with_dynamic_shape && x_shape.size() == 1) return false;
    }
830 831
    if (op_type == "slice") {
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
已提交
832
          !desc.HasAttr("ends") || !desc.HasAttr("decrease_axis")) {
833 834 835 836 837 838 839 840
        return false;
      } else {
        std::vector<int> axes =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
        std::vector<int> starts =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
        std::vector<int> ends =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
已提交
841 842
        std::vector<int> decrease_axis =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
843 844 845
        if (axes.size() != starts.size() || axes.size() != ends.size()) {
          return false;
        }
已提交
846 847 848 849 850
        if (decrease_axis.size() > 0) {
          VLOG(3) << "Invalid slice decrease_axis. decrease_axis.size() > 0"
                     "is not supported in TensorRT";
          return false;
        }
851 852 853 854 855 856 857 858
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
S
Shang Zhizhou 已提交
859 860 861 862 863 864 865 866 867
        } else {
          for (size_t i = 0; i < axes.size(); i++) {
            if (starts[i] < 0 || ends[i] < 0) {
              VLOG(3) << "Invalid slice attribute 'starts' or 'ends'. "
                         "Negative starts or ends not supported in TensorRT "
                         "when running in dynamic shape mode.";
              return false;
            }
          }
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        }
      }
    }

    if (op_type == "elementwise_add" || op_type == "elementwise_mul") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
891
      auto* block = desc.Block();
892 893 894 895 896 897
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
898 899 900 901 902 903 904 905
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() == 1 && y_shape.size() == 1) {
        VLOG(3) << "Now trt may not support two 1d tensor elementwise op.";
        return false;
      }
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused EmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
    }

    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
943 944 945 946 947 948

      if (desc.HasAttr("approximate")) {
        if (BOOST_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
      }

      auto* block = desc.Block();
949 950 951 952 953 954
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
955 956 957 958 959 960 961
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
962 963 964 965 966 967
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "gelu op does not support input's dim is 2 in tensorrt "
                   "static shape, the output shape has diff.";
        return false;
      }
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    if (op_type == "instance_norm") {
      if (with_dynamic_shape) {
        VLOG(3) << "trt instance_norm op does not support dynamic shape ";
        return false;
      }
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
      const float pad_value = BOOST_GET_CONST(float, desc.GetAttr("pad_value"));
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1040 1041
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1042 1043 1044 1045 1046 1047
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1069 1070
    }

1071 1072
    if (op_type == "scale") {
      auto* block = desc.Block();
1073 1074 1075 1076 1077 1078
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1079 1080 1081 1082
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
1083 1084 1085 1086 1087 1088 1089
        VLOG(3) << "scale op does not support input's dim is 1 in tensorrt.";
        return false;
      }
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "scale op does not support input's dim is 2 in tensorrt "
                   "static shape, the output shape has diff.";
1090 1091 1092 1093
        return false;
      }
    }

1094 1095
    if (op_type == "swish") {
      auto* block = desc.Block();
1096 1097 1098 1099 1100 1101
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1102 1103 1104 1105 1106 1107 1108
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1109 1110 1111 1112 1113 1114
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "swish op does not support input's dim is 2 in tensorrt "
                   "static shape, the output shape has diff.";
        return false;
      }
1115 1116
    }

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1130 1131

      auto* block = desc.Block();
1132 1133 1134 1135 1136 1137
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }

      if (!with_dynamic_shape) {
        if (x_shape.size() == 2) {
          VLOG(3) << "prelu op does not support input's dim is 2 in tensorrt.";
          return false;
        }
      }
1158 1159 1160 1161 1162 1163 1164 1165

#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1166 1167 1168 1169 1170 1171 1172 1173 1174
    }

    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
      std::vector<std::string> attrs{"pooled_height", "pooled_width",
                                     "spatial_scale", "sampling_ratio"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;

      const auto sampling_ratio =
          BOOST_GET_CONST(int, desc.GetAttr("sampling_ratio"));
      const auto aligned = BOOST_GET_CONST(bool, desc.GetAttr("aligned"));

      if (sampling_ratio == -1 && aligned == true) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    }

    if (op_type == "shuffle_channel") {
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
                   "the shuffle_channel op does not support dynamic shape yet";
        return false;
      }
    }

    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
    }

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    if (op_type == "fc") {
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
              ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
              : (desc.HasAttr("in_num_col_dims")
                     ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
                     : 1);
      if (x_num_col_dims < 1) {
        VLOG(3) << "converter expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = %d.";
        return false;
      }
    }
1242

W
Wangzheee 已提交
1243 1244 1245
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
1246 1247
      }
      // Paddle-TRT does not support the input tensors: Shape and ShapeTensor
1248
      auto reshape_inputs = desc.Inputs();
1249 1250 1251 1252 1253 1254 1255 1256 1257
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
1258
      }
W
Wilber 已提交
1259 1260 1261
      std::vector<int> shape =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
1262 1263
      if (!with_dynamic_shape && (shape[0] == -1 || shape.size() == 1))
        return false;
W
Wangzheee 已提交
1264
    }
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
1281 1282 1283 1284 1285 1286
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1287 1288 1289 1290 1291 1292 1293
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "clip op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1294 1295 1296 1297 1298 1299
      // TODO(inference): fix
      if (x_shape.size() == 2 && !with_dynamic_shape) {
        VLOG(3) << "clip op does not support input's dim is 2 in tensorrt "
                   "static shape, the output shape has diff.";
        return false;
      }
1300 1301
    }

W
wenbin 已提交
1302
    if (op_type == "reduce_sum" || op_type == "reduce_mean") {
1303 1304
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
1305 1306
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
1307
                   "reduce_all)";
W
wenbin 已提交
1308 1309
        std::cout << "attr " << desc.HasAttr("keep_dim") << " "
                  << desc.HasAttr("dim") << " " << desc.HasAttr("reduce_all");
1310 1311
        return false;
      }
W
wenbin 已提交
1312 1313 1314

      // The batch size dimension cannot be reduced if it's not dynamic shape.
      if (!with_dynamic_shape) {
W
wenbin 已提交
1315
        if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
1316 1317 1318 1319 1320
        std::vector<int32_t> dim =
            BOOST_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
        for (auto x : dim) {
          if (!x) return false;
        }
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
      } else {
        if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !BOOST_GET_CONST(bool, desc.GetAttr("keep_dim")))
          return false;
      }
      if (desc.HasAttr("reduce_all")) {
        int out_dtype = BOOST_GET_CONST(int32_t, desc.GetAttr("out_dtype"));
        if (out_dtype != -1) {
          return false;
        }
W
wenbin 已提交
1331
      }
1332
    }
W
wenbin 已提交
1333 1334 1335
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
1336 1337 1338
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
1339
          return false;
1340 1341 1342 1343
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
1344
          return false;
1345
        }
W
wenbin 已提交
1346 1347 1348 1349 1350
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
1351

W
wenbin 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
            BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block is null.";
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() <= 2) {
          VLOG(3) << "hard_sigmoid op does not support input's dim less than 3 "
                     "in tensorrt.";
          return false;
        }
      }
    }

1429
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
1430
  }
W
wenbin 已提交
1431 1432

  VLOG(3) << "trt unsupported op " << op_type;
1433 1434 1435 1436 1437 1438 1439 1440
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle