test_callback_visualdl.py 2.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
import time
import random
import tempfile
import shutil
import numpy as np

import paddle
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
from paddle.metric import Accuracy
from paddle.nn.layer.loss import CrossEntropyLoss
32
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
L
LielinJiang 已提交
33 34 35


class MnistDataset(MNIST):
36

L
LielinJiang 已提交
37 38 39 40 41
    def __len__(self):
        return 512


class TestCallbacks(unittest.TestCase):
42

L
LielinJiang 已提交
43 44 45 46 47 48
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

49
    def func_visualdl_callback(self):
L
LielinJiang 已提交
50 51 52 53 54 55 56
        inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        labels = [InputSpec([None, 1], 'int64', 'label')]

        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = MnistDataset(mode='train', transform=transform)
        eval_dataset = MnistDataset(mode='test', transform=transform)

57
        net = paddle.vision.models.LeNet()
L
LielinJiang 已提交
58 59 60
        model = paddle.Model(net, inputs, labels)

        optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
61 62 63
        model.prepare(optimizer=optim,
                      loss=paddle.nn.CrossEntropyLoss(),
                      metrics=paddle.metric.Accuracy())
L
LielinJiang 已提交
64 65 66 67 68 69 70

        callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
        model.fit(train_dataset,
                  eval_dataset,
                  batch_size=64,
                  callbacks=callback)

71 72 73 74 75
    def test_visualdl_callback(self):
        with _test_eager_guard():
            self.func_visualdl_callback()
        self.func_visualdl_callback()

L
LielinJiang 已提交
76 77 78

if __name__ == '__main__':
    unittest.main()