operator.h 13.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55

D
dzhwinter 已提交
56
// define some kernel priority
57
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
58 59
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

60 61 62 63
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
64 65
proto::VarType::Type GetDataTypeOfVar(const Variable* var);

Q
Qiao Longfei 已提交
66
class OperatorBase;
67
class ExecutionContext;
68

Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
77 78
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
79

Q
Qiao Longfei 已提交
80 81
  virtual ~OperatorBase() {}

82
  /// Executor will call this interface function to Run an op.
83 84
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
85

T
typhoonzero 已提交
86 87 88
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

89 90 91
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
92

93 94
  virtual bool SupportGPU() const { return false; }

95 96 97 98 99 100 101 102 103
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
104

Y
Yu Yang 已提交
105 106
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
107

108
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
109
  //! Get a input with argument's name described in `op_proto`
110
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
111
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
112
  const std::vector<std::string>& Inputs(const std::string& name) const;
113
  //! Get all inputs variable names
Q
qijun 已提交
114 115
  std::vector<std::string> InputVars() const;

116
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
117
  //! Get a output with argument's name described in `op_proto`
118
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
119 120
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
121
  const std::vector<std::string>& Outputs(const std::string& name) const;
122
  //! Get all outputs variable names
Y
Yu Yang 已提交
123
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
124

Y
Yu Yang 已提交
125
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
126 127
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
128

Q
qiaolongfei 已提交
129
 protected:
Q
Qiao Longfei 已提交
130
  std::string type_;
D
dongzhihong 已提交
131
  // NOTE: in case of OpGrad, inputs_ contains:
132
  // I (Inputs)
D
dongzhihong 已提交
133 134
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
135
  VariableNameMap inputs_;
Y
Yu Yang 已提交
136

D
dongzhihong 已提交
137 138
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
139
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
140
  AttributeMap attrs_;
141 142 143 144

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
145 146
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
147 148
};

Y
Yu Yang 已提交
149 150
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
151
// register it. i.e. `Clone` method is not needed to define by yourself.
152 153 154
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
155
  }
Y
Yu Yang 已提交
156

Y
Yu Yang 已提交
157 158 159 160
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
161 162
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
163 164 165
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
166
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
167

168 169
class NOP : public OperatorBase {
 public:
170
  using OperatorBase::OperatorBase;
171 172 173
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
174 175 176 177

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
178 179
};

180
class ExecutionContext {
Y
Yan Chunwei 已提交
181
 public:
182 183 184
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
185

Q
qiaolongfei 已提交
186 187 188 189
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
190
  template <typename T>
Y
Yu Yang 已提交
191 192
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
193 194
  }

Y
Yu Yang 已提交
195
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
196
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
197 198
  }

Y
Yu Yang 已提交
199
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
200
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
201 202
  }

203
  const Variable* InputVar(const std::string& name) const {
204
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
205
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
206 207
  }

208
  Variable* OutputVar(const std::string& name) const {
209
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
210
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
211 212
  }

213 214
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
215 216
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
217
    res.reserve(names.size());
218 219
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
220 221
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
222
                   });
Y
Yan Chunwei 已提交
223 224 225
    return res;
  }

226
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
227
    auto names = op_.Outputs(name);
228
    std::vector<Variable*> res;
229
    res.reserve(names.size());
230 231
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
232 233
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
234
                   });
Y
Yan Chunwei 已提交
235 236 237
    return res;
  }

238 239
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
240
    auto* var = InputVar(name);
241
    return var == nullptr ? nullptr : &var->Get<T>();
242 243 244 245
  }

  template <typename T>
  T* Output(const std::string& name) const {
246
    auto var = OutputVar(name);
247
    return var == nullptr ? nullptr : var->GetMutable<T>();
248 249 250 251 252 253 254 255
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
256
                   [&](const std::string& sub_name) {
257
                     auto var = scope_.FindVar(sub_name);
258
                     return var == nullptr ? nullptr : &var->Get<T>();
259 260 261 262 263
                   });
    return res;
  }

  template <typename T>
264
  std::vector<T*> MultiOutput(const std::string& name) const {
265
    auto names = op_.Outputs(name);
266
    std::vector<T*> res;
267 268
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
269
                   [&](const std::string& sub_name) {
270
                     auto var = scope_.FindVar(sub_name);
271
                     return var == nullptr ? nullptr : var->GetMutable<T>();
272 273 274 275
                   });
    return res;
  }

276
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
277

Q
QI JUN 已提交
278 279 280 281 282
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

283
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
284
    return device_context_;
Q
qijun 已提交
285
  }
Q
qijun 已提交
286

Q
QI JUN 已提交
287 288 289 290 291 292 293 294
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
295
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
296 297 298
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
299

D
dzhwinter 已提交
300
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
301 302 303 304
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

305
 private:
306 307
  const OperatorBase& op_;
  const Scope& scope_;
308
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
309 310
};

311 312 313 314 315 316 317 318 319 320 321 322 323 324
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
325
class OpKernelBase {
Q
qijun 已提交
326
 public:
Q
qijun 已提交
327
  /**
328
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
329 330
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
331
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
332 333
   */

334
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
335

Y
Yu Yang 已提交
336 337 338 339 340 341 342
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
343 344
};

Y
Yu Yang 已提交
345 346
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
347
  using OpKernelMap =
Y
Yu Yang 已提交
348 349
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
350

Y
Yu Yang 已提交
351 352
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
353 354
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
355 356 357 358
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
359
  }
Y
Yan Chunwei 已提交
360

361
  bool SupportGPU() const override {
Y
Yu Yang 已提交
362 363 364 365 366
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
367 368
  }

369 370 371
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
372

Q
qiaolongfei 已提交
373
 protected:
374 375 376 377
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
378 379

 private:
380
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
381
  // same.
382
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
383
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
384 385
};

Y
Yu Yang 已提交
386 387
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
388 389
}  // namespace framework
}  // namespace paddle