test_dynrnn_static_input.py 8.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import paddle.v2 as paddle
17 18 19 20 21
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid.backward import append_backward
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, switch_main_program
22 23 24
import bisect
import numpy as np

Y
yangyaming 已提交
25
fluid.default_startup_program().random_seed = 1
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


class TestDyRnnStaticInput(unittest.TestCase):
    def setUp(self):
        self._delta = 0.005
        self._max_sequence_len = 3
        self._program = Program()
        switch_main_program(self._program)
        self.output_dim = 10
        self.place = core.CPUPlace()
        self.prepare_x_tensor()
        self.prepare_static_input_tensor()
        self.exe = fluid.Executor(self.place)

    def prepare_x_tensor(self):
        self.x_tensor_dim = 10
        lod = [[0, 2, 3, 6]]
        shape = [lod[0][-1], self.x_tensor_dim]
        self.x_tensor_data = np.random.random(shape).astype('float32')
        self.x_tensor = core.LoDTensor()
        self.x_tensor.set_lod(lod)
        self.x_tensor.set(self.x_tensor_data, self.place)

    def prepare_static_input_tensor(self):
        self.static_input_tensor_dim = 4
        lod = [[0, 1, 3, 6]]
        shape = [lod[0][-1], self.static_input_tensor_dim]
        self.static_input_data = np.random.random(shape).astype('float32')
        self.static_input_tensor = core.LoDTensor()
        self.static_input_tensor.set_lod(lod)
        self.static_input_tensor.set(self.static_input_data, self.place)

    def fetch_value(self, var):
        fetch_outs = self.exe.run(feed={
            'x_tensor': self.x_tensor,
            'static_input_tensor': self.static_input_tensor
        },
                                  fetch_list=[var],
                                  return_numpy=False)
        return self._lodtensor_to_ndarray(fetch_outs[0])

    def _lodtensor_to_ndarray(self, lod_tensor):
        dims = lod_tensor.get_dims()
        ndarray = np.zeros(shape=dims).astype('float32')
        for i in xrange(np.product(dims)):
            ndarray.ravel()[i] = lod_tensor.get_float_element(i)
Y
yangyaming 已提交
72
        return ndarray, lod_tensor.lod()
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    def build_graph(self, only_forward=False):
        x_tensor = fluid.layers.data(
            name='x_tensor',
            shape=[self.x_tensor_dim],
            dtype='float32',
            lod_level=1)
        x_tensor.stop_gradient = False

        static_input_tensor = fluid.layers.data(
            name='static_input_tensor',
            shape=[self.static_input_tensor_dim],
            dtype='float32',
            lod_level=1)
        static_input_tensor.stop_gradient = False

        if only_forward:
            static_input_out_array = self._program.global_block().create_var(
                name='static_input_out_array',
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype='float32')
            static_input_out_array.stop_gradient = True

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            step_x = rnn.step_input(x_tensor)
            step_static_input = rnn.static_input(static_input_tensor)
            if only_forward:
                fluid.layers.array_write(
                    x=step_static_input,
                    i=rnn.step_idx,
                    array=static_input_out_array)
            last = fluid.layers.sequence_pool(
                input=step_static_input, pool_type='last')
            projected = fluid.layers.fc(input=[step_x, last],
                                        size=self.output_dim)
            rnn.output(projected)

        if only_forward:
            static_input_step_outs = []
            step_idx = fluid.layers.fill_constant(
                shape=[1], dtype='int64', value=0)
            step_idx.stop_gradient = True

            for i in xrange(self._max_sequence_len):
                step_out = fluid.layers.array_read(static_input_out_array,
                                                   step_idx)
                step_out.stop_gradient = True
                static_input_step_outs.append(step_out)
                fluid.layers.increment(x=step_idx, value=1.0, in_place=True)

        if only_forward:
            return static_input_step_outs

        last = fluid.layers.sequence_pool(input=rnn(), pool_type='last')
        loss = fluid.layers.mean(x=last)
        append_backward(loss)
        static_input_grad = self._program.global_block().var(
            framework.grad_var_name('static_input_tensor'))
        return static_input_grad, loss

    def get_seq_len_from_lod(self, lod):
        return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)]

    def get_expected_static_step_outs(self):
        x_lod = self.x_tensor.lod()
        x_seq_len = self.get_seq_len_from_lod(x_lod)
        x_seq_len_sorted = sorted(x_seq_len)
        x_sorted_indices = np.argsort(x_seq_len)[::-1]

        static_lod = self.static_input_tensor.lod()
        static_sliced = [
            self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]]
            for i in xrange(len(static_lod[0]) - 1)
        ]
        static_seq_len = self.get_seq_len_from_lod(static_lod)
        static_reordered = []
        for i in xrange(len(x_sorted_indices)):
            static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
        static_seq_len_reordered = [
            static_seq_len[x_sorted_indices[i]]
            for i in xrange(len(x_sorted_indices))
        ]

        static_step_outs = []
Y
yangyaming 已提交
158
        static_step_lods = []
159 160 161

        for i in xrange(self._max_sequence_len):
            end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
Y
yangyaming 已提交
162 163 164 165 166
            lod = [0]
            for i in xrange(end):
                lod.append(static_seq_len_reordered[i] + lod[-1])
            static_step_lods.append([lod])
            end = lod[-1]
167 168 169
            static_step_outs.append(
                np.array(static_reordered[:end]).astype('float32'))

Y
yangyaming 已提交
170
        return static_step_outs, static_step_lods
171 172 173 174

    def test_step_out(self):
        static_step_outs = self.build_graph(only_forward=True)
        self.exe.run(framework.default_startup_program())
Y
yangyaming 已提交
175
        expected_outs, expected_lods = self.get_expected_static_step_outs()
176
        for i in xrange(self._max_sequence_len):
Y
yangyaming 已提交
177 178 179
            step_out, lod = self.fetch_value(static_step_outs[i])
            self.assertTrue(np.allclose(step_out, expected_outs[i]))
            self.assertTrue(np.allclose(lod, expected_lods[i]))
180 181 182 183 184

    def test_network_gradient(self):
        static_input_grad, loss = self.build_graph()
        self.exe.run(framework.default_startup_program())

Y
yangyaming 已提交
185
        actual_gradients, actual_lod = self.fetch_value(static_input_grad)
186 187 188 189 190 191 192 193 194

        static_input_shape = self.static_input_tensor.get_dims()
        numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
        # calculate numeric gradients
        tensor_size = np.product(static_input_shape)
        for i in xrange(tensor_size):
            origin = self.static_input_tensor.get_float_element(i)
            x_pos = origin + self._delta
            self.static_input_tensor.set_float_element(i, x_pos)
Y
yangyaming 已提交
195
            y_pos = self.fetch_value(loss)[0][0]
196 197
            x_neg = origin - self._delta
            self.static_input_tensor.set_float_element(i, x_neg)
Y
yangyaming 已提交
198
            y_neg = self.fetch_value(loss)[0][0]
199 200
            self.static_input_tensor.set_float_element(i, origin)
            numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
Y
yangyaming 已提交
201 202
        self.assertTrue(np.allclose(actual_gradients, numeric_gradients, 0.001))
        self.assertTrue(np.allclose(actual_lod, self.static_input_tensor.lod()))
203 204 205 206


if __name__ == '__main__':
    unittest.main()