test_detection_map_op.py 9.9 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaox 已提交
15 16 17 18 19 20 21 22 23 24 25 26
import unittest
import numpy as np
import sys
import collections
import math
from op_test import OpTest


class TestDetectionMAPOp(OpTest):
    def set_data(self):
        self.init_test_case()

W
wanghaox 已提交
27
        self.mAP = [self.calc_map(self.tf_pos, self.tf_pos_lod)]
W
wanghaox 已提交
28 29 30 31
        self.label = np.array(self.label).astype('float32')
        self.detect = np.array(self.detect).astype('float32')
        self.mAP = np.array(self.mAP).astype('float32')

W
wanghaox 已提交
32 33 34 35 36 37 38 39
        if (len(self.class_pos_count) > 0):
            self.class_pos_count = np.array(self.class_pos_count).astype(
                'int32')
            self.true_pos = np.array(self.true_pos).astype('float32')
            self.false_pos = np.array(self.false_pos).astype('float32')

            self.inputs = {
                'Label': (self.label, self.label_lod),
W
wanghaox 已提交
40
                'DetectRes': (self.detect, self.detect_lod),
W
wanghaox 已提交
41 42 43 44 45 46 47
                'PosCount': self.class_pos_count,
                'TruePos': (self.true_pos, self.true_pos_lod),
                'FalsePos': (self.false_pos, self.false_pos_lod)
            }
        else:
            self.inputs = {
                'Label': (self.label, self.label_lod),
W
wanghaox 已提交
48
                'DetectRes': (self.detect, self.detect_lod),
W
wanghaox 已提交
49
            }
W
wanghaox 已提交
50 51 52 53 54 55 56

        self.attrs = {
            'overlap_threshold': self.overlap_threshold,
            'evaluate_difficult': self.evaluate_difficult,
            'ap_type': self.ap_type
        }

W
wanghaox 已提交
57 58 59 60 61 62 63
        self.out_class_pos_count = np.array(self.out_class_pos_count).astype(
            'int')
        self.out_true_pos = np.array(self.out_true_pos).astype('float32')
        self.out_false_pos = np.array(self.out_false_pos).astype('float32')

        self.outputs = {
            'MAP': self.mAP,
W
wanghaox 已提交
64 65 66
            'AccumPosCount': self.out_class_pos_count,
            'AccumTruePos': (self.out_true_pos, self.out_true_pos_lod),
            'AccumFalsePos': (self.out_false_pos, self.out_false_pos_lod)
W
wanghaox 已提交
67
        }
W
wanghaox 已提交
68 69 70 71

    def init_test_case(self):
        self.overlap_threshold = 0.3
        self.evaluate_difficult = True
W
wanghaox 已提交
72
        self.ap_type = "integral"
W
wanghaox 已提交
73 74

        self.label_lod = [[0, 2, 4]]
W
wanghaox 已提交
75 76 77
        # label difficult xmin ymin xmax ymax
        self.label = [[1, 0, 0.1, 0.1, 0.3, 0.3], [1, 1, 0.6, 0.6, 0.8, 0.8],
                      [2, 0, 0.3, 0.3, 0.6, 0.5], [1, 0, 0.7, 0.1, 0.9, 0.3]]
W
wanghaox 已提交
78

W
wanghaox 已提交
79 80
        # label score xmin ymin xmax ymax difficult
        self.detect_lod = [[0, 3, 7]]
W
wanghaox 已提交
81
        self.detect = [
W
wanghaox 已提交
82 83 84 85
            [1, 0.3, 0.1, 0.0, 0.4, 0.3], [1, 0.7, 0.0, 0.1, 0.2, 0.3],
            [1, 0.9, 0.7, 0.6, 0.8, 0.8], [2, 0.8, 0.2, 0.1, 0.4, 0.4],
            [2, 0.1, 0.4, 0.3, 0.7, 0.5], [1, 0.2, 0.8, 0.1, 1.0, 0.3],
            [3, 0.2, 0.8, 0.1, 1.0, 0.3]
W
wanghaox 已提交
86 87
        ]

W
wanghaox 已提交
88 89 90 91 92
        # label score true_pos false_pos
        self.tf_pos_lod = [[0, 3, 7]]
        self.tf_pos = [[1, 0.9, 1, 0], [1, 0.7, 1, 0], [1, 0.3, 0, 1],
                       [1, 0.2, 1, 0], [2, 0.8, 0, 1], [2, 0.1, 1, 0],
                       [3, 0.2, 0, 1]]
W
wanghaox 已提交
93

W
wanghaox 已提交
94 95 96 97 98 99
        self.class_pos_count = []
        self.true_pos_lod = [[]]
        self.true_pos = [[]]
        self.false_pos_lod = [[]]
        self.false_pos = [[]]

W
wanghaox 已提交
100
    def calc_map(self, tf_pos, tf_pos_lod):
W
wanghaox 已提交
101 102 103
        mAP = 0.0
        count = 0

W
wanghaox 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        def get_input_pos(class_pos_count, true_pos, true_pos_lod, false_pos,
                          false_pos_lod):
            class_pos_count_dict = collections.Counter()
            true_pos_dict = collections.defaultdict(list)
            false_pos_dict = collections.defaultdict(list)
            for i, count in enumerate(class_pos_count):
                class_pos_count_dict[i] = count

            for i in range(len(true_pos_lod[0]) - 1):
                start = true_pos_lod[0][i]
                end = true_pos_lod[0][i + 1]
                for j in range(start, end):
                    true_pos_dict[i].append(true_pos[j])

            for i in range(len(false_pos_lod[0]) - 1):
                start = false_pos_lod[0][i]
                end = false_pos_lod[0][i + 1]
                for j in range(start, end):
                    false_pos_dict[i].append(false_pos[j])

            return class_pos_count_dict, true_pos_dict, false_pos_dict

        def get_output_pos(label_count, true_pos, false_pos):
            max_label = 0
            for (label, label_pos_num) in label_count.items():
                if max_label < label:
                    max_label = label

            label_number = max_label + 1

            out_class_pos_count = []
            out_true_pos_lod = [0]
            out_true_pos = []
            out_false_pos_lod = [0]
            out_false_pos = []

            for i in range(label_number):
                out_class_pos_count.append([label_count[i]])
                true_pos_list = true_pos[i]
                out_true_pos += true_pos_list
                out_true_pos_lod.append(len(out_true_pos))
                false_pos_list = false_pos[i]
                out_false_pos += false_pos_list
                out_false_pos_lod.append(len(out_false_pos))

            return out_class_pos_count, out_true_pos, [
                out_true_pos_lod
            ], out_false_pos, [out_false_pos_lod]
W
wanghaox 已提交
152 153 154 155 156 157 158 159 160 161

        def get_accumulation(pos_list):
            sorted_list = sorted(pos_list, key=lambda pos: pos[0], reverse=True)
            sum = 0
            accu_list = []
            for (score, count) in sorted_list:
                sum += count
                accu_list.append(sum)
            return accu_list

W
wanghaox 已提交
162 163 164
        label_count, true_pos, false_pos = get_input_pos(
            self.class_pos_count, self.true_pos, self.true_pos_lod,
            self.false_pos, self.false_pos_lod)
W
wanghaox 已提交
165
        for (label, difficult, xmin, ymin, xmax, ymax) in self.label:
W
wanghaox 已提交
166 167 168 169 170 171 172
            if self.evaluate_difficult:
                label_count[label] += 1
            elif not difficult:
                label_count[label] += 1

        true_pos = collections.defaultdict(list)
        false_pos = collections.defaultdict(list)
W
wanghaox 已提交
173
        for (label, score, tp, fp) in tf_pos:
W
wanghaox 已提交
174 175 176 177
            true_pos[label].append([score, tp])
            false_pos[label].append([score, fp])

        for (label, label_pos_num) in label_count.items():
W
wanghaox 已提交
178
            if label_pos_num == 0 or label not in true_pos: continue
W
wanghaox 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            label_true_pos = true_pos[label]
            label_false_pos = false_pos[label]

            accu_tp_sum = get_accumulation(label_true_pos)
            accu_fp_sum = get_accumulation(label_false_pos)

            precision = []
            recall = []

            for i in range(len(accu_tp_sum)):
                precision.append(
                    float(accu_tp_sum[i]) /
                    float(accu_tp_sum[i] + accu_fp_sum[i]))
                recall.append(float(accu_tp_sum[i]) / label_pos_num)

            if self.ap_type == "11point":
W
wanghaox 已提交
195
                max_precisions = [0.0] * 11
W
wanghaox 已提交
196
                start_idx = len(accu_tp_sum) - 1
W
wanghaox 已提交
197 198 199
                for j in range(10, -1, -1):
                    for i in range(start_idx, -1, -1):
                        if recall[i] < float(j) / 10.0:
W
wanghaox 已提交
200 201 202 203
                            start_idx = i
                            if j > 0:
                                max_precisions[j - 1] = max_precisions[j]
                                break
W
wanghaox 已提交
204 205 206 207
                        else:
                            if max_precisions[j] < precision[i]:
                                max_precisions[j] = precision[i]
                for j in range(10, -1, -1):
W
wanghaox 已提交
208 209
                    mAP += max_precisions[j] / 11
                count += 1
W
wanghaox 已提交
210
            elif self.ap_type == "integral":
W
wanghaox 已提交
211 212 213 214 215 216 217 218 219 220
                average_precisions = 0.0
                prev_recall = 0.0
                for i in range(len(accu_tp_sum)):
                    if math.fabs(recall[i] - prev_recall) > 1e-6:
                        average_precisions += precision[i] * \
                            math.fabs(recall[i] - prev_recall)
                        prev_recall = recall[i]

                mAP += average_precisions
                count += 1
W
wanghaox 已提交
221 222 223 224
        self.out_class_pos_count, self.out_true_pos, self.out_true_pos_lod, self.out_false_pos, self.out_false_pos_lod = get_output_pos(
            label_count, true_pos, false_pos)
        if count != 0:
            mAP /= count
W
wanghaox 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        return mAP * 100.0

    def setUp(self):
        self.op_type = "detection_map"
        self.set_data()

    def test_check_output(self):
        self.check_output()


class TestDetectionMAPOpSkipDiff(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOpSkipDiff, self).init_test_case()

        self.evaluate_difficult = False

W
wanghaox 已提交
241 242 243 244 245 246 247 248 249 250 251
        self.tf_pos_lod = [[0, 2, 6]]
        # label score true_pos false_pos
        self.tf_pos = [[1, 0.7, 1, 0], [1, 0.3, 0, 1], [1, 0.2, 1, 0],
                       [2, 0.8, 0, 1], [2, 0.1, 1, 0], [3, 0.2, 0, 1]]


class TestDetectionMAPOp11Point(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOp11Point, self).init_test_case()

        self.ap_type = "11point"
W
wanghaox 已提交
252 253


W
wanghaox 已提交
254 255 256 257 258 259 260 261 262 263
class TestDetectionMAPOpMultiBatch(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOpMultiBatch, self).init_test_case()
        self.class_pos_count = [0, 2, 1]
        self.true_pos_lod = [[0, 0, 3, 5]]
        self.true_pos = [[0.7, 1.], [0.3, 0.], [0.2, 1.], [0.8, 0.], [0.1, 1.]]
        self.false_pos_lod = [[0, 0, 3, 5]]
        self.false_pos = [[0.7, 0.], [0.3, 1.], [0.2, 0.], [0.8, 1.], [0.1, 0.]]


W
wanghaox 已提交
264 265
if __name__ == '__main__':
    unittest.main()