elementwise_op.h 12.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <string>
18
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chengduo 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
34 35

  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
36
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
37
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
38
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
39
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
40 41 42
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

C
chengduo 已提交
43 44 45
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
C
chengduo 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        "The input var's type should be LoDTensor, but the received is %s [%s]",
        ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front());

    if (ctx->GetInputsVarType("X").front() ==
        framework::proto::VarType::LOD_TENSOR) {
      auto x_dim = ctx->GetInputDim("X");
      auto y_dim = ctx->GetInputDim("Y");
      PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
                        "Rank of first input must >= rank of second input.");
    } else if (ctx->GetInputsVarType("X").front() ==
               framework::proto::VarType::SELECTED_ROWS) {
      PADDLE_ENFORCE((ctx->GetInputDim("Y").size() == 1u) &&
                         (ctx->GetInputDim("Y")[0] == 1),
                     "For elementwise_op, if X is Sparse, "
                     "Y must be scalar.");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
                   ctx->GetInputsVarType("X").front());
    }
65 66

    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
67
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
68
  }
69 70

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
71 72
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
73 74 75 76 77 78 79 80 81 82

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
83 84
};

C
chengduo 已提交
85 86 87 88 89 90
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
91 92 93
  }
};

G
gongweibao 已提交
94 95
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
96
  void Make() final {
C
caoying03 已提交
97 98
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
99
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
100
    AddAttr<int>("axis",
C
caoying03 已提交
101 102
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
103 104
        .SetDefault(-1)
        .EqualGreaterThan(-1);
105 106
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
107
    AddAttr<std::string>(
108 109 110 111 112 113
        "x_data_format",
        "(string, default NCHW) Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
114
    AddAttr<std::string>(
115 116 117 118 119 120
        "y_data_format",
        "(string, default \"\") Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
Y
Yu Yang 已提交
121
    AddComment(string::Sprintf(R"DOC(
T
Tao Luo 已提交
122
Elementwise %s Operator
K
kexinzhao 已提交
123 124 125

The equation is:

Y
Yu Yang 已提交
126
$$%s$$
K
kexinzhao 已提交
127

L
Luo Tao 已提交
128 129
- $X$: a tensor of any dimension. 
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
130 131

There are two cases for this operator:
132

L
Luo Tao 已提交
133 134
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
135 136

For case 2:
137

L
Luo Tao 已提交
138 139 140 141 142
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index 
   for broadcasting $Y$ onto $X$. 
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of 
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
143

L
Luo Tao 已提交
144
For example:
145

146
  .. code-block:: python
G
gongweibao 已提交
147

148 149
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
150
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
151 152
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
153
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
154

L
Luo Tao 已提交
155 156
The inputs $X$ and $Y$ can carry the different LoD information. 
But the output only shares the LoD information with the input $X$.
K
kexinzhao 已提交
157

Y
Yu Yang 已提交
158 159
)DOC",
                               GetName(), GetEquation()));
G
gongweibao 已提交
160 161 162
  }

 protected:
Y
Yu Yang 已提交
163
  virtual std::string GetName() const = 0;
C
chengduo 已提交
164

Y
Yu Yang 已提交
165
  virtual std::string GetEquation() const = 0;
G
gongweibao 已提交
166 167 168 169 170 171 172
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
173
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
G
gongweibao 已提交
181 182

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
183
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
184

Q
Qiao Longfei 已提交
185 186 187
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
188 189
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
190
    }
Q
Qiao Longfei 已提交
191
    if (ctx->HasOutput(y_grad_name)) {
192 193
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
194 195
    }
  }
196 197

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
198
      const framework::ExecutionContext &ctx) const override {
199 200
    auto input_data_type = framework::ToDataType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type());
201 202 203 204 205 206 207 208 209 210

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
211
};
212 213 214 215 216 217 218 219

// For Add, Sub op, the X, Out is not needed.
class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
 public:
  using operators::ElementwiseOpGrad::ElementwiseOpGrad;
  using operators::ElementwiseOpGrad::GetExpectedKernelType;
  using Tensor = framework::Tensor;

C
chengduo 已提交
220
  void InferShape(framework::InferShapeContext *ctx) const override {
221 222 223 224 225
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
226 227
      ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
      ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
228 229 230 231
    }
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
232 233 234

      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
235 236 237 238
    }
  }
};

239 240 241
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
242 243
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
244 245
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
246
      auto &dout =
247 248 249 250 251 252
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

G
gongweibao 已提交
253 254
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
255

256 257 258 259 260 261 262 263 264 265 266
/*
*/

#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)                   \
  class kernel_type##GradMaker                                               \
      : public paddle::framework::SingleGradOpDescMaker {                    \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<paddle::framework::OpDesc> Apply() const override {      \
C
chengduo 已提交
267
      auto *op = new paddle::framework::OpDesc();                            \
268 269 270 271 272 273 274 275 276 277 278
      op->SetType(#kernel_type "_grad");                                     \
      op->SetInput("Y", Input("Y"));                                         \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
      op->SetAttrMap(Attrs());                                               \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      op->SetOutput(::paddle::framework::GradVarName("Y"), InputGrad("Y"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
  }

Y
Yu Yang 已提交
279 280 281 282 283 284 285 286 287
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
288
                    ::paddle::operators::ElementwiseOpInferVarType,     \
Y
Yu Yang 已提交
289 290
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
291 292 293 294 295 296 297 298 299 300 301 302 303 304

#define REGISTER_ELEMWISE_EXPLICIT_OP(op_type, op_name, equation, ...) \
  class __ElemwiseOp##op_type##Maker__                                 \
      : public ::paddle::operators::ElementwiseOpMaker {               \
   protected:                                                          \
    virtual std::string GetName() const { return op_name; }            \
    virtual std::string GetEquation() const { return equation; }       \
  };                                                                   \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,       \
                    __ElemwiseOp##op_type##Maker__,                    \
                    ::paddle::operators::ElementwiseOpInferVarType,    \
                    op_type##GradMaker);                               \
  REGISTER_OPERATOR(op_type##_grad,                                    \
                    ::paddle::operators::ElementwiseOpExplicitGrad)