quantization_pass.py 84.0 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
C
ceci3 已提交
54
    "matmul_v2",
55 56 57 58 59 60 61 62 63
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
64
    "layer_norm",
65 66 67 68 69 70 71
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
72
    "slice",
73 74
    "hard_swish",
    "hard_sigmoid",
75
    "conv2d_transpose",
76 77 78 79
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
80 81 82 83 84
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
    "reshape",
C
ceci3 已提交
85
    "layer_norm",
86 87
]

88 89 90
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
91
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
92
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
93
    "mul": [["X", "Y"], ["Out"]],
94
    "matmul": [["X", "Y"], ["Out"]],
C
ceci3 已提交
95
    "matmul_v2": [["X", "Y"], ["Out"]],
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
112
    "transpose2": [["X"], ["Out"]],
113 114 115 116 117 118 119 120 121
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
122
    "prelu": [["X"], ["Out"]],
123 124
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
125 126
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
127
    "layer_norm": [["X"], ["Y"]],
128
    "sigmoid": [["X"], ["Out"]],
129 130
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
131 132
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
133
    "gru": [["Input", "Weight"], ["Hidden"]],
134
    "lstm": [["Input", "Weight"], ["Hidden"]],
135 136 137
    "pad2d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
C
cc 已提交
138
    "unsqueeze2": [["X"], ["Out"]],
G
Guanghua Yu 已提交
139
    "flatten_contiguous_range": [['X'], ["Out"]],
140 141
}

142 143
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

C
ceci3 已提交
144 145 146
_channelwise_quant_axis1_ops = [
    'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]
147

W
WangZhen 已提交
148

149
def _get_op_input_var_names(op):
150 151 152 153 154 155 156
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
157 158 159 160 161
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
162 163 164
    if op_name not in _op_real_in_out_name:
        return []

165 166 167 168 169 170 171 172 173 174
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


175 176 177 178 179 180
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
181 182 183
    if op_name not in _op_real_in_out_name:
        return None

184 185 186 187 188 189 190 191 192
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


193 194 195 196 197 198 199
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
200 201 202
    if op_name not in _op_real_in_out_name:
        return []

203 204 205 206 207 208 209 210 211 212
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


213 214 215 216 217 218
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
219 220 221
    if op_name not in _op_real_in_out_name:
        return None

222 223 224 225 226 227 228 229 230 231
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


232 233 234 235
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
236
        'The scope cannot be set None.'
237
    assert place is not None, \
238
        'The place cannot be set None.'
239 240 241 242
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


243 244 245 246 247
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
248 249 250 251
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
252 253 254
    return is_input_all_not_persistable


255 256 257 258 259 260 261 262 263 264 265 266 267 268
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


269
class QuantizationTransformPass(object):
270
    """
271 272
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
273
    """
274
    _supported_quantizable_op_type = [
275 276
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul',
        'matmul_v2'
277
    ]
278

W
WangZhen 已提交
279
    def __init__(self,
280
                 scope=None,
281
                 place=None,
W
WangZhen 已提交
282 283 284 285
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
286
                 window_size=10000,
287
                 moving_rate=0.9,
288
                 skip_pattern=['skip_quant'],
289 290 291 292 293 294 295
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
296
        r"""
297
        Constructor.
298

W
WangZhen 已提交
299
        Args:
300
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
301 302
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
303 304 305
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
306
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
307
                the bias is not quantized.
308 309
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
310 311 312 313 314
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
315
            weight_quantize_type(str): quantization type for weights,
316 317 318
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
319 320
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
321
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
322
                will be presented in the name scope of an op. When the skip pattern is
323
                detected in an op's name scope, the corresponding op will not be quantized. 
324
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
325 326
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
354 355
                Default is None.

356

W
WangZhen 已提交
357 358
        Examples:
        .. code-block:: python
359 360 361 362
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
363
            from paddle.fluid.contrib.slim.graph import IrGraph
364 365
            from paddle.fluid import core

366
            graph = IrGraph(core.Graph(program.desc), for_test=False)
367
            place = fluid.CPUPlace()
368
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
369
            place)
370
            transform_pass.apply(graph)
W
WangZhen 已提交
371
        """
372
        self._scope = scope
373
        self._place = _get_paddle_place(place)
374 375
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
376
        self._skip_pattern = skip_pattern
377 378 379 380 381 382
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
383 384 385 386
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
387 388
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
389 390
        if activation_quantize_type not in quant_type:
            raise ValueError(
391 392 393
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
394 395
        if weight_quantize_type not in quant_type:
            raise ValueError(
396
                "Unknown weight_quantize_type: '%s'. It can only be "
397 398
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
399

400 401 402
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
403
        self._moving_rate = moving_rate
W
WangZhen 已提交
404

405 406
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
407
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
408
                op + " is not supported for quantization."
409 410
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
411
        ]
412 413
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
414

415 416 417
        self.create_var_map = {}
        self.create_op_map = {}

418
    def apply(self, graph):
419 420 421 422 423 424 425
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
426 427
        Returns:
            None
428
        """
W
WangZhen 已提交
429
        assert isinstance(graph,
430 431
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
432 433
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
434
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
435
        processed_vars = []
W
WangZhen 已提交
436

437
        def _quant_preprocess(op_node):
438 439 440
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
441 442
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
443 444
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
445 446
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
447

448
            if user_skipped:
449
                op_node.op()._set_attr("skip_quant", True)
450
                op_node.op()._set_attr("with_quant_attr", True)
451

W
WangZhen 已提交
452
        def _transform_forward(graph, op):
453
            op.op()._set_attr("quantization_type", "qat_with_weight")
454
            op.op()._set_attr("with_quant_attr", True)
455 456
            inputs = op.inputs
            for var_node in inputs:
457 458
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
459 460 461
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
462 463 464
                    name = var_node.name()
                    if name in processed_vars:
                        continue
465 466
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
496
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
497
                        else self._activation_bits
498 499
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
500 501 502 503 504 505 506 507
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
508 509
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
510
                            graph, var_node, name, quant_bits, quant_type)
511 512
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
513
                    dequantized_vars[name] = dequant_var_node
514
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
515 516 517

        def _transform_backward(graph, op):
            for var_node in op.inputs:
518 519
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
520 521
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
522
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
523

524 525 526 527 528 529 530 531 532 533
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

534
        if not self._is_test:
W
WangZhen 已提交
535
            self._create_global_step(graph)
536
        ops = graph.all_op_nodes()
537 538 539 540 541 542
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
543 544
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
545 546
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
547
        for op in ops:
548
            if op.name() in self._quantizable_ops:
549
                if not self._is_skip_quant(graph, op) and _has_weight(op):
550
                    _transform_forward(graph, op)
W
WangZhen 已提交
551 552
        # The loop for renaming the inputs of backward op.
        for op in ops:
553
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
554
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
555
        graph.resolve_hazard()
556
        return graph
W
WangZhen 已提交
557

W
WangZhen 已提交
558
    def _create_global_step(self, graph):
559 560
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
561
            counter_name = cpt.to_text('@STEP_COUNTER@')
562
            for node in graph.all_var_nodes():
W
WangZhen 已提交
563
                if node.name() == counter_name:
564 565
                    self._global_step = node
            if self._global_step is None:
566
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
567 568 569 570
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
571 572 573 574 575 576
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
577 578
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
579
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
580 581
                increment_op = graph.create_op_node(
                    op_type='increment',
582 583 584 585 586
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
587 588
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
589 590 591
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
592

593
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
594 595 596 597
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
598 599
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
600
        elif quant_type == 'range_abs_max':
601
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
602
                                                       quant_bits)
603
        elif quant_type == 'moving_average_abs_max':
604 605
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
606

607
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
608 609 610 611 612 613
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
614
            name=self._quantized_var_name(name),
615 616 617
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
618
        scale_var_node = graph.create_persistable_node(
619
            name=self._quantized_scale_name(name),
620
            var_type=var_node.type(),
621
            shape=[1],
622
            var_dtype=var_node.dtype())
623 624 625 626 627 628 629 630
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
631 632
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
633 634 635 636
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
637 638 639
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
640 641 642
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
643 644
        return quant_var_node, scale_var_node

645
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
646 647 648 649 650 651
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
652
            name=self._quantized_var_name(name),
653 654 655
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
656

657
        scale_in_node = graph.create_persistable_node(
658
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
659 660
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
661
            var_dtype=var_node.dtype())
662 663
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
664 665 666 667 668 669
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
670 671 672 673 674

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

675
        if not self._is_test:
W
WangZhen 已提交
676
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
677
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
678 679
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
680
                shape=[self._window_size],
681
                var_dtype=var_node.dtype())
682 683
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
684 685 686 687 688 689 690
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

691
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
692 693
            outputs['OutScales'] = scales_node
        attrs = {
694
            'window_size': self._window_size,
W
WangZhen 已提交
695
            'bit_length': quant_bits,
696 697
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
698 699 700 701 702 703 704
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

705 706 707 708
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
709

710 711 712
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
713 714 715

        return quant_var_node, scale_out_node

716
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
717 718 719 720
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
721
            name=self._quantized_var_name(name),
722 723 724 725
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
726
            name=self._quantized_scale_name(name),
727 728 729
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
730 731
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
732 733 734 735 736 737
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
738 739 740 741 742 743 744 745 746 747

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
748 749
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
750
            _init_var_node(
751
                state_in_node,
752 753 754 755
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
756 757 758 759 760
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
761 762 763 764 765 766
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

803 804
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
805 806 807 808 809 810
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
811
            name=self._quantized_var_name(name),
812 813 814
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
815
        scale_var_node = graph.create_persistable_node(
816
            name=self._quantized_scale_name(name),
817
            var_type=var_node.type(),
818
            shape=[var_node.shape()[quant_axis]],
819
            var_dtype=var_node.dtype())
820 821 822 823 824 825 826 827
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
828 829 830 831
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
832
                'quant_axis': quant_axis,
833
                'is_test': self._is_test,
834 835 836 837 838 839 840 841 842 843
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
844 845 846 847 848 849 850 851
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
852 853 854
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
855 856 857
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
858 859 860 861
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
862 863 864
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
865 866 867
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
868 869
        return dequant_var_node

870
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
871
                                   quant_bits, quant_axis):
872 873 874 875 876 877 878 879 880 881 882 883 884 885
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
886
                'quant_axis': quant_axis,
887 888 889 890 891 892 893 894 895 896 897
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
983
                graph.out_node_mapping_table[out_node.name] = var_node.name()
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1087
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1088 1089
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1090

1091
    def _is_skip_quant(self, graph, op_node):
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1104 1105 1106
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1107 1108
        return is_skip

W
WangZhen 已提交
1109 1110 1111 1112 1113

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1114
                 bias_correction=False,
W
WangZhen 已提交
1115 1116
                 weight_bits=8,
                 activation_bits=8,
1117
                 weight_quantize_type='abs_max',
1118
                 quantizable_op_type=None):
1119 1120
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1121
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1122
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1123 1124
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1125 1126 1127

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1128 1129
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1130 1131
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1132 1133 1134 1135 1136
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1137 1138
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1139
        """
W
WangZhen 已提交
1140 1141 1142 1143 1144
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1145
        self._bias_correction = bias_correction
1146
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1147 1148 1149
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1150 1151
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1152 1153
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1154
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1155 1156

    def apply(self, graph):
1157 1158 1159 1160 1161
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1162 1163
        Returns:
            None
1164
        """
1165
        # Get input scales in fake quant op and process weights
1166 1167
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1168 1169 1170
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1171
                input_arg_name = op_node.input('X')[0]
1172 1173 1174 1175
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1188
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1189
                        scale_v = scale_v[0]
W
WangZhen 已提交
1190
                    else:
1191
                        scale_v = scale_v.tolist()
1192
                    self._quant_var_scale_map[input_arg_name] = scale_v
1193
                    # Quantize weight and restore
W
WangZhen 已提交
1194
                    param_v = self._load_var(input_arg_name)
1195 1196 1197 1198 1199 1200 1201
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
X
XGZhang 已提交
1202 1203 1204 1205
                        param_v.copy(), scale_v, self._weight_bits, quant_axis)
                    if self._bias_correction == True:
                        quantized_param_v = self._bias_correction_w(
                            param_v, quantized_param_v, scale_v, quant_axis)
W
WangZhen 已提交
1206
                    self._restore_var(input_arg_name, quantized_param_v)
1207
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1208

1209
        # Remove all fake dequant op
1210
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1211 1212 1213 1214 1215
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1216
        # Insert post dequant op
1217
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1218
        for op_node in ops:
1219 1220 1221
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1222
                if self._weight_quantize_type == 'channel_wise_abs_max':
1223 1224
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1225 1226
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1227

1228
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1229 1230
        for op_node in ops:
            for var_node in op_node.inputs:
1231 1232 1233
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1234 1235 1236 1237
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1238
        graph.resolve_hazard()
1239
        return graph
W
WangZhen 已提交
1240 1241

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1242 1243
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1244 1245
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1246
        else:
1247 1248
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1249
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1250

1251
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1252 1253 1254
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1255 1256 1257 1258 1259
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1260 1261 1262
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1263
            scale_v = self._quant_var_scale_map[original_var_name]
1264 1265 1266 1267 1268 1269 1270 1271
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1272
                scale_var_node = self._quant_var_scale_map[original_var_name]
1273

1274
        if len(op_node.output_arg_names()) != 1:
1275 1276 1277
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1278 1279
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1280 1281 1282 1283 1284
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1285 1286
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1287 1288 1289
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1290 1291 1292 1293 1294
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
1295 1296 1297
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1298 1299
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1300 1301 1302 1303
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1304
                'quant_axis': quant_axis,
1305 1306
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1317
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1318 1319
        return dequant_var_node

W
WangZhen 已提交
1320
    def _insert_post_dequant_op(self, graph, op_node):
1321
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1322 1323 1324
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1325
        for var_node in op_node.inputs:
W
WangZhen 已提交
1326
            name = var_node.name()
1327 1328 1329 1330 1331
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1332
                new_in.clear_outputs()
W
WangZhen 已提交
1333 1334
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1335
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1336 1337 1338 1339
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1340
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1341
                max_range *= param_range / scale_v
W
WangZhen 已提交
1342
            else:
1343
                max_range *= act_range
1344
                assert isinstance(scale_v, IrNode)
1345
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1346

1347
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1348 1349 1350
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1351 1352
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1353 1354
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1355 1356 1357
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1358 1359
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1360 1361 1362 1363
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1364 1365 1366 1367 1368 1369
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1370
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1371 1372 1373 1374 1375
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1376 1377 1378
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1379 1380 1381

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1382
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1383 1384 1385 1386 1387 1388
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1389 1390 1391 1392 1393 1394
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1418
    def _is_float(self, v):
W
WangZhen 已提交
1419 1420 1421
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1422 1423
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1424 1425 1426 1427 1428 1429 1430
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1431 1432
        if isinstance(scale, list):
            for i, s in enumerate(scale):
X
XGZhang 已提交
1433 1434
                if s == 0.0:
                    s = 1e-8
1435
                if quant_axis == 0:
1436 1437
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1438
                else:
1439 1440
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1441
        else:
X
XGZhang 已提交
1442
            scale = 1e-8 if scale == 0.0 else scale
1443 1444 1445
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1446

X
XGZhang 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
        quantized_param_v = self._quant(x_dequant, scale_v, self._weight_bits,
                                        quant_axis)
        return quantized_param_v

1487 1488

class ConvertToInt8Pass(object):
1489
    def __init__(self, scope, place, quantizable_op_type=None):
1490 1491 1492 1493 1494
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1495 1496 1497
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1498 1499
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1500
        """
1501 1502 1503 1504 1505
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1506
        self._place = _get_paddle_place(place)
1507 1508

    def apply(self, graph):
1509
        """
T
tianshuo78520a 已提交
1510 1511
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1512 1513 1514

        Args:
            graph(IrGraph): the applied graph.
1515 1516
        Returns:
            None
1517
        """
1518 1519
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1520 1521
        input_map = {}
        for op_node in ops:
1522 1523
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1536
        graph.resolve_hazard()
1537 1538 1539 1540
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1541
        int8_var_node = graph.create_persistable_node(
1542
            name=cpt.to_text(int8_var_node_name),
1543 1544
            var_type=var_node.type(),
            shape=var_node.shape(),
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1560
        ops = graph.all_op_nodes()
1561 1562 1563 1564 1565 1566
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1567 1568 1569 1570 1571 1572
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1573 1574 1575 1576 1577
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1578
        """
T
tianshuo78520a 已提交
1579
        This pass is used to convert the frozen graph for paddle-mobile execution.
1580
        """
1581 1582
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1583 1584

    def apply(self, graph):
1585 1586 1587 1588 1589 1590 1591
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1592 1593
        Returns:
            None
1594
        """
1595
        ops = graph.all_op_nodes()
1596 1597 1598
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1599
                op_node.set_type('quantize')
1600 1601 1602 1603 1604 1605 1606
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1607
                op_node.set_type('dequantize')
1608 1609 1610 1611 1612 1613
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1614
        graph.resolve_hazard()
1615
        return graph
1616 1617


1618
class OutScaleForTrainingPass(object):
1619 1620 1621 1622 1623 1624 1625
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1626 1627 1628
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1629 1630 1631
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1632
        self._place = _get_paddle_place(place)
1633 1634
        self._moving_rate = moving_rate
        self._is_test = None
1635
        self._teller_set = _out_scale_op_list
1636 1637 1638 1639 1640 1641 1642 1643 1644

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1645 1646
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1647
        self._is_test = graph.is_test()
1648 1649 1650 1651 1652 1653 1654
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1655 1656 1657 1658
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1659 1660 1661 1662 1663
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1664 1665 1666 1667 1668 1669 1670 1671
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1672
                ins = {'X': in_node}
1673
                outs = {'OutScale': scale_node}
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1734
class OutScaleForInferencePass(object):
1735 1736 1737 1738 1739 1740 1741 1742 1743
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1744
        self._teller_set = _out_scale_op_list
1745 1746 1747 1748 1749 1750 1751 1752 1753

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1754 1755
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1756 1757 1758
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1759 1760
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1761 1762 1763 1764 1765 1766
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1767
                    scale_name = self._scale_name(var_name)
1768 1769 1770 1771 1772 1773 1774
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1775 1776 1777 1778 1779

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1780
                        + "_threshold", float(scale_value))
1781
                    op_node.op()._set_attr("with_quant_attr", True)
1782 1783 1784 1785 1786 1787 1788 1789
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1790 1791 1792


class AddQuantDequantPass(object):
1793 1794 1795 1796
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1797 1798 1799 1800 1801
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1802
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
1803
        "leaky_relu", "tanh", "swish", "scale", "transpose", "transpose2",
C
ceci3 已提交
1804 1805
        "sigmoid", "pad2d", "flatten", "flatten2", "batch_norm", "layer_norm",
        "matmul_v2"
1806 1807
    ]

1808 1809 1810
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1811 1812 1813 1814 1815
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1816
                 skip_pattern=["skip_quant"],
1817
                 quantizable_op_type=["elementwise_add", "pool2d"],
1818
                 is_full_quantized=False):
1819
        """
1820
        Constructor.
1821 1822 1823

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1824 1825 1826
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1827 1828 1829 1830 1831 1832 1833 1834
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1835
                quantized. Default is ["elementwise_add", "pool2d"]. 
1836 1837 1838 1839
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1840 1841
        """
        self._scope = scope
1842
        self._place = _get_paddle_place(place)
1843 1844 1845
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1846
        self._skip_pattern = skip_pattern
1847 1848 1849 1850 1851 1852 1853

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1854
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1855
                    op_type + " is not supported for quantization."
1856 1857 1858 1859
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1860 1861
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1862 1863 1864

    def apply(self, graph):
        """
1865 1866
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1867

1868 1869
        Args:
            graph(IrGraph): the target graph.
1870 1871
        Returns:
            None
1872 1873 1874 1875
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1876 1877
        dequantized_vars_map = collections.OrderedDict()

1878 1879 1880
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1881
            if op_node.name() in self._quantizable_op_type:
1882
                is_skip = False
1883
                if isinstance(self._skip_pattern, list):
1884
                    is_skip = op_node.op().has_attr("op_namescope") and \
1885 1886
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1887
                    is_skip = op_node.op().has_attr("op_namescope") and \
1888
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1889 1890 1891
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1892
                    (not _is_input_all_not_persistable(graph, op_node)):
1893
                    continue
1894

1895 1896 1897
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1898
                op_node.op()._set_attr("with_quant_attr", True)
1899
                arg_names = _get_op_input_var_names(op_node)
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1910

1911 1912
        # Backward stage, update input link
        for op_node in all_op_nodes:
1913
            if op_node.name() in self._quantizable_grad_op_type:
1914 1915 1916 1917 1918 1919 1920 1921
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node