executor.py 5.0 KB
Newer Older
D
dzhwinter 已提交
1
import numpy as np
Y
Yang Yu 已提交
2 3
import contextlib
from framework import Program, default_main_program
4 5
from . import core

Y
Yang Yu 已提交
6
__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope']
Y
Yu Yang 已提交
7

Y
Yu Yang 已提交
8 9
g_scope = core.Scope()

Y
Yu Yang 已提交
10

Y
Yang Yu 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
def global_scope():
    return g_scope


def switch_scope(scope):
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


@contextlib.contextmanager
def scope_guard(scope):
    ex = switch_scope(scope)
    yield
    switch_scope(ex)


D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
    tensor_data = np.array(tensor)
    if len(lod) == 0:
        ans = tensor_data
    else:
        raise RuntimeError("LoD Calculate lacks unit tests and buggy")
    # elif len(lod) == 1:
    #     ans = []
    #     idx = 0
    #     while idx < len(lod) - 1:
    #         ans.append(tensor_data[lod[idx]:lod[idx + 1]])
    #         idx += 1
    # else:
    #     for l in reversed(lod):
    #         ans = []
    #         idx = 0
    #         while idx < len(l) - 1:
    #             ans.append(tensor_data[l[idx]:l[idx + 1]])
    #             idx += 1
    #         tensor_data = ans
    #     ans = tensor_data
    return ans


Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65 66 67
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

D
dzhwinter 已提交
68 69
        # TODO(dzhwinter) : only use the first place
        self.executor = core.Executor(act_places[0])
D
dzhwinter 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        self.places = places

    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
111 112

    def run(self,
Y
Yu Yang 已提交
113
            program=None,
114 115
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
116
            feed_var_name='feed',
Y
Yu Yang 已提交
117
            fetch_var_name='fetch',
D
dzhwinter 已提交
118 119
            scope=None,
            return_numpy=True):
120 121 122 123 124
        if feed is None:
            feed = {}
        if fetch_list is None:
            fetch_list = []

Y
Yu Yang 已提交
125
        if program is None:
Y
Yu Yang 已提交
126
            program = default_main_program()
Y
Yu Yang 已提交
127

Y
Yu Yang 已提交
128 129 130
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
131
        if scope is None:
Y
Yang Yu 已提交
132
            scope = global_scope()
Y
Yu Yang 已提交
133

Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
        program = program.clone()
        global_block = program.global_block()
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

        for i, name in enumerate(feed):
            out = global_block.var(name)
            global_block.prepend_op(
                'feed',
                inputs={'X': [feed_var]},
                outputs={'Out': [out]},
                attrs={'col': i})
D
dzhwinter 已提交
148 149 150 151
            cur_feed = feed[name]
            if not isinstance(cur_feed, core.LoDTensor):
                cur_feed = self.aslodtensor(cur_feed)
            core.set_feed_variable(scope, cur_feed, feed_var.name, i)
Y
Yu Yang 已提交
152 153 154 155 156 157 158 159 160 161 162 163

        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)
        for i, var in enumerate(fetch_list):
            global_block.append_op(
                type='fetch',
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i})

T
typhoonzero 已提交
164
        self.executor.run(program.desc, scope, 0, True, True)
D
dzhwinter 已提交
165
        outs = [
Y
Yu Yang 已提交
166
            core.get_fetch_variable(scope, fetch_var_name, i)
Y
Yu Yang 已提交
167 168
            for i in xrange(len(fetch_list))
        ]
D
dzhwinter 已提交
169 170 171 172

        if return_numpy:
            outs = as_numpy(outs)
        return outs