test_lstmp_op.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def identity(x):
    return x


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))


def tanh(x):
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.


def relu(x):
    return np.maximum(x, 0)


ACTVATION = {
    'identity': identity,
    'sigmoid': sigmoid,
    'tanh': tanh,
    'relu': relu
}


# LSTM with recurrent projection Layer
def lstmp(
        input,  # T x 4D
        lod,  # 1 x N
        h0=None,  # N x D
        c0=None,  # N x D
        w_r=None,  # P x 5D
        w_rh=None,  # D x P
        w_b=None,  # 1 x 4D
        w_c=None,  # 1 x 3D
        is_reverse=False,
        act_gate=None,
        act_cell=None,
65 66
        act_cand=None,
        share_cell_act=True):
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    def _step(x, w_r, w_rh, w_c, r_pre, c_pre, act_gate, act_cell, act_cand):
        g = np.dot(r_pre, w_r)  # 1 x 4D
        g = g + x
        g = np.reshape(g, (1, g.size))
        c, g_i, g_f, g_o = np.split(g, 4, axis=1)
        if w_c is None:
            g_i = act_gate(g_i)  # 1 x D
            g_f = act_gate(g_f)  # 1 x D
        else:
            w_ic, w_fc, _ = np.split(w_c, 3, axis=1)
            g_i = act_gate(g_i + w_ic * c_pre)  # 1 x D
            g_f = act_gate(g_f + w_fc * c_pre)  # 1 x D
        c = g_f * c_pre + g_i * act_cand(c)  # 1 x D

        if w_c is None:
            g_o = act_gate(g_o)  # 1 x D
        else:
            _, _, w_oc = np.split(w_c, 3, axis=1)
            g_o = act_gate(g_o + w_oc * c)  # 1 x D
        h = g_o * act_cell(c)
        # projection
        r = np.dot(h, w_rh)
89 90
        if share_cell_act:
            r = act_cell(r)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        return r, c

    def _reverse(x, lod):
        y = np.zeros_like(x)
        for i in range(len(lod) - 1):
            b, e = lod[i], lod[i + 1]
            y[b:e, :] = np.flip(x[b:e, :], 0)
        return y

    offset = lod[0]
    batch_size = len(offset) - 1
    # recurrent projection state
    projection = []
    cell = []
    input = _reverse(input, offset) if is_reverse else input
    if w_b is not None:
        input = input + np.tile(w_b, (offset[-1], 1))
    for i in range(batch_size):
        # compute one sequence
        seq_len = offset[i + 1] - offset[i]
        x = input[offset[i]:offset[i + 1], :]
        r_pre = np.dot(h0[i], w_rh)  # 1 x P
113 114
        if share_cell_act:
            r_pre = act_cell(r_pre)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        c_pre = c0[i]  # 1 x D
        for j in range(seq_len):
            # compute one step
            r_pre, c_pre = _step(x[j], w_r, w_rh, w_c, r_pre, c_pre, act_gate,
                                 act_cell, act_cand)
            projection.append(r_pre.flatten())
            cell.append(c_pre.flatten())

    projection = np.array(projection).astype('float64')
    cell = np.array(cell).astype('float64')

    projection = _reverse(projection, offset) if is_reverse else projection
    cell = _reverse(cell, offset) if is_reverse else cell

    assert projection.shape == (input.shape[0], w_r.shape[0])  # T x P
    assert cell.shape == (input.shape[0], input.shape[1] / 4)  # T x D
    return projection, cell


class TestLstmOp(OpTest):
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        # hidden size
        self.D = 16
        # projection size
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

146
        self.share_cell_act = True
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        self.has_initial_state = False
        self.is_reverse = False
        self.use_peepholes = True

    def setUp(self):
        self.set_argument()
        self.op_type = 'lstmp'

        T = self.lod[0][-1]
        N = len(self.lod[0]) - 1

        x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
        if self.has_initial_state:
            h0 = np.random.normal(size=(N, self.D)).astype('float64')
            c0 = np.random.normal(size=(N, self.D)).astype('float64')
        else:
            h0 = np.zeros((N, self.D)).astype('float64')
            c0 = np.zeros((N, self.D)).astype('float64')
        w = np.random.normal(size=(self.P, 4 * self.D)).astype('float64')
        if self.use_peepholes:
            b = np.random.normal(size=(1, 7 * self.D)).astype('float64')
        else:
            b = np.random.normal(size=(1, 4 * self.D)).astype('float64')

        w_b = b[:, 0:4 * self.D]
        w_c = b[:, 4 * self.D:] if self.use_peepholes else None
        w_rh = np.random.normal(size=(self.D, self.P)).astype('float64')
        r, c = lstmp(x, self.lod, h0, c0, w, w_rh, w_b, w_c, self.is_reverse,
                     ACTVATION[self.act_gate], ACTVATION[self.act_cell],
176
                     ACTVATION[self.act_cand], self.share_cell_act)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

        self.inputs = {'Input': (x, self.lod), 'Weight': w, 'ProjWeight': w_rh}

        self.inputs['Bias'] = b

        if self.has_initial_state:
            self.inputs['H0'] = h0
            self.inputs['C0'] = c0

        self.outputs = {
            'Projection': (r, self.lod),
            'Cell': (c, self.lod),
        }
        self.attrs = {
            'use_peepholes': self.use_peepholes,
            'is_reverse': self.is_reverse,
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
Y
Yibing Liu 已提交
195 196
            'candidate_activation': self.act_cand,
            'share_cell_act': self.share_cell_act
197 198 199 200 201 202 203 204
        }

    def test_check_output(self):
        self.check_output(atol=1e-8)

    def test_check_grad(self):
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
205
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
206
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
207
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
208 209 210
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
211 212
            ['Input', 'Weight', 'ProjWeight', 'Bias'], ['Projection'],
            max_relative_error=1e-2)
213 214 215 216 217 218


class TestLstmOpHasInitial(TestLstmOp):
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
219
        self.P = 5
220 221 222 223 224

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

225
        self.share_cell_act = True
226 227 228 229 230 231 232
        self.has_initial_state = True
        self.is_reverse = True
        self.use_peepholes = True

    def test_check_grad(self):
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
233
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
234
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
235
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
236 237 238
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
239 240 241
            ['Input', 'Weight', 'ProjWeight', 'Bias', 'H0', 'C0'],
            ['Projection'],
            max_relative_error=1e-2)
242 243 244

    def test_check_grad_ingore_bias(self):
        N = len(self.lod[0]) - 1
245
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
246
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
247
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
248 249 250
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
251 252
            ['Input', 'ProjWeight', 'Weight'], ['Projection'],
            max_relative_error=1e-2,
253 254 255 256
            no_grad_set=set('Bias'))

    def test_check_grad_ingore_weight(self):
        N = len(self.lod[0]) - 1
257
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
258
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
259
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
260 261 262
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
263 264
            ['Input', 'ProjWeight', 'Bias'], ['Projection'],
            max_relative_error=1e-2,
265 266
            no_grad_set=set('Weight'))

267 268 269 270 271 272 273 274 275 276 277 278
    def test_check_grad_ingore_proj_weight(self):
        N = len(self.lod[0]) - 1
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
            ['Input', 'Weight', 'Bias'], ['Projection'],
            max_relative_error=1e-2,
            no_grad_set=set('ProjWeight'))

279 280
    def test_check_grad_ingore_input(self):
        N = len(self.lod[0]) - 1
281
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
282
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
283
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
284 285 286
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
287 288
            ['Weight', 'ProjWeight', 'Bias'], ['Projection'],
            max_relative_error=1e-2,
289 290 291 292
            no_grad_set=set('Input'))

    def test_check_grad_ingore_h0(self):
        N = len(self.lod[0]) - 1
293
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
294
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
295
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
296 297 298
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
299 300
            ['Input', 'Weight', 'ProjWeight', 'Bias', 'C0'], ['Projection'],
            max_relative_error=1e-2,
301 302 303 304
            no_grad_set=set('H0'))

    def test_check_grad_ingore_c0(self):
        N = len(self.lod[0]) - 1
305
        self.outputs['OrderedP0'] = np.zeros((N, self.P)).astype('float64')
306
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
307
        self.outputs['BatchHidden'] = np.zeros((N, self.D)).astype('float64')
308 309 310
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
        self.check_grad(
311 312
            ['Input', 'Weight', 'ProjWeight', 'Bias', 'H0'], ['Projection'],
            max_relative_error=1e-2,
313 314 315 316 317 318 319 320 321 322 323 324 325
            no_grad_set=set('C0'))


class TestLstmOpRerverse(TestLstmOp):
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

326
        self.share_cell_act = True
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        self.has_initial_state = False
        self.is_reverse = True
        self.use_peepholes = True


class TestLstmOpNotUsePeepholes(TestLstmOp):
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

342
        self.share_cell_act = True
343
        self.has_initial_state = False
Y
Yibing Liu 已提交
344
        self.is_reverse = False
345 346 347
        self.use_peepholes = False


Y
Yibing Liu 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
class TestLstmOpNotShareCellAct(TestLstmOp):
    def set_argument(self):
        self.lod = [[0, 2, 5, 7]]
        self.D = 16
        self.P = 10

        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'

        self.share_cell_act = False
        self.has_initial_state = False
        self.is_reverse = False
        self.use_peepholes = True


364 365
if __name__ == '__main__':
    unittest.main()