fleet_py.cc 16.7 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fcntl.h>

#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/pybind/fleet_py.h"

#include <map>
#include <memory>
#include <string>
#include <vector>

1
123malin 已提交
28 29
#include "paddle/fluid/distributed/index_dataset/index_sampler.h"
#include "paddle/fluid/distributed/index_dataset/index_wrapper.h"
30 31 32 33 34 35 36
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
#include "paddle/fluid/distributed/ps/service/communicator/communicator_common.h"
#include "paddle/fluid/distributed/ps/service/env.h"
#include "paddle/fluid/distributed/ps/service/graph_brpc_client.h"
#include "paddle/fluid/distributed/ps/service/heter_client.h"
#include "paddle/fluid/distributed/ps/service/ps_service/graph_py_service.h"
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
37
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_wrapper.h"
T
tangwei12 已提交
38 39 40 41 42 43

namespace py = pybind11;
using paddle::distributed::CommContext;
using paddle::distributed::Communicator;
using paddle::distributed::FleetWrapper;
using paddle::distributed::HeterClient;
S
seemingwang 已提交
44 45 46 47 48
using paddle::distributed::GraphPyService;
using paddle::distributed::GraphNode;
using paddle::distributed::GraphPyServer;
using paddle::distributed::GraphPyClient;
using paddle::distributed::FeatureNode;
T
tangwei12 已提交
49 50 51 52 53 54 55 56

namespace paddle {
namespace pybind {
void BindDistFleetWrapper(py::module* m) {
  py::class_<FleetWrapper, std::shared_ptr<FleetWrapper>>(*m,
                                                          "DistFleetWrapper")
      .def(py::init([]() { return FleetWrapper::GetInstance(); }))
      .def("load_sparse", &FleetWrapper::LoadSparseOnServer)
T
Thunderbrook 已提交
57 58
      .def("load_model", &FleetWrapper::LoadModel)
      .def("load_one_table", &FleetWrapper::LoadModelOneTable)
T
tangwei12 已提交
59 60 61 62 63 64 65 66 67 68 69
      .def("init_server", &FleetWrapper::InitServer)
      .def("run_server",
           (uint64_t (FleetWrapper::*)(void)) & FleetWrapper::RunServer)
      .def("run_server", (uint64_t (FleetWrapper::*)(          // NOLINT
                             const std::string&, uint32_t)) &  // NOLINT
                             FleetWrapper::RunServer)
      .def("init_worker", &FleetWrapper::InitWorker)
      .def("push_dense_params", &FleetWrapper::PushDenseParamSync)
      .def("pull_dense_params", &FleetWrapper::PullDenseVarsSync)
      .def("save_all_model", &FleetWrapper::SaveModel)
      .def("save_one_model", &FleetWrapper::SaveModelOneTable)
70
      .def("recv_and_save_model", &FleetWrapper::RecvAndSaveTable)
T
tangwei12 已提交
71 72 73
      .def("sparse_table_stat", &FleetWrapper::PrintTableStat)
      .def("stop_server", &FleetWrapper::StopServer)
      .def("stop_worker", &FleetWrapper::FinalizeWorker)
74
      .def("barrier", &FleetWrapper::BarrierWithTable)
75
      .def("shrink_sparse_table", &FleetWrapper::ShrinkSparseTable)
76 77
      .def("set_clients", &FleetWrapper::SetClients)
      .def("get_client_info", &FleetWrapper::GetClientsInfo)
78 79
      .def("create_client2client_connection",
           &FleetWrapper::CreateClient2ClientConnection);
80
}
T
tangwei12 已提交
81 82 83 84

void BindPSHost(py::module* m) {
  py::class_<distributed::PSHost>(*m, "PSHost")
      .def(py::init<const std::string&, uint32_t, uint32_t>())
Z
zhaocaibei123 已提交
85 86 87 88 89
      .def("serialize_to_string", &distributed::PSHost::SerializeToString)
      .def("parse_from_string", &distributed::PSHost::ParseFromString)
      .def("to_uint64", &distributed::PSHost::SerializeToUint64)
      .def("from_uint64", &distributed::PSHost::ParseFromUint64)
      .def("to_string", &distributed::PSHost::ToString);
T
tangwei12 已提交
90 91 92 93 94 95 96
}

void BindCommunicatorContext(py::module* m) {
  py::class_<CommContext>(*m, "CommContext")
      .def(
          py::init<const std::string&, const std::vector<std::string>&,
                   const std::vector<std::string>&, const std::vector<int64_t>&,
97
                   const std::vector<std::string>&, int, bool, bool, bool, int,
W
wangguanqun 已提交
98
                   bool, bool, int64_t>())
T
tangwei12 已提交
99 100 101 102
      .def("var_name", [](const CommContext& self) { return self.var_name; })
      .def("trainer_id",
           [](const CommContext& self) { return self.trainer_id; })
      .def("table_id", [](const CommContext& self) { return self.table_id; })
W
wangguanqun 已提交
103 104
      .def("program_id",
           [](const CommContext& self) { return self.program_id; })
T
tangwei12 已提交
105 106 107 108 109 110 111 112 113 114 115 116
      .def("split_varnames",
           [](const CommContext& self) { return self.splited_varnames; })
      .def("split_endpoints",
           [](const CommContext& self) { return self.epmap; })
      .def("sections",
           [](const CommContext& self) { return self.height_sections; })
      .def("aggregate", [](const CommContext& self) { return self.merge_add; })
      .def("is_sparse", [](const CommContext& self) { return self.is_sparse; })
      .def("is_distributed",
           [](const CommContext& self) { return self.is_distributed; })
      .def("origin_varnames",
           [](const CommContext& self) { return self.origin_varnames; })
117 118
      .def("is_tensor_table",
           [](const CommContext& self) { return self.is_tensor_table; })
W
wangguanqun 已提交
119 120
      .def("is_datanorm_table",
           [](const CommContext& self) { return self.is_datanorm_table; })
T
tangwei12 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
      .def("__str__", [](const CommContext& self) { return self.print(); });
}

using paddle::distributed::AsyncCommunicator;
using paddle::distributed::GeoCommunicator;
using paddle::distributed::RecvCtxMap;
using paddle::distributed::RpcCtxMap;
using paddle::distributed::SyncCommunicator;
using paddle::framework::Scope;

void BindDistCommunicator(py::module* m) {
  // Communicator is already used by nccl, change to DistCommunicator
  py::class_<Communicator, std::shared_ptr<Communicator>>(*m,
                                                          "DistCommunicator")
      .def(py::init([](const std::string& mode, const std::string& dist_desc,
                       const std::vector<std::string>& host_sign_list,
                       const RpcCtxMap& send_ctx, const RecvCtxMap& recv_ctx,
                       Scope* param_scope,
                       std::map<std::string, std::string>& envs) {
        if (mode == "ASYNC") {
          Communicator::InitInstance<AsyncCommunicator>(
              send_ctx, recv_ctx, dist_desc, host_sign_list, param_scope, envs);
        } else if (mode == "SYNC") {
          Communicator::InitInstance<SyncCommunicator>(
              send_ctx, recv_ctx, dist_desc, host_sign_list, param_scope, envs);
        } else if (mode == "GEO") {
          Communicator::InitInstance<GeoCommunicator>(
              send_ctx, recv_ctx, dist_desc, host_sign_list, param_scope, envs);
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "unsuported communicator MODE"));
        }
        return Communicator::GetInstantcePtr();
      }))
      .def("stop", &Communicator::Stop)
      .def("start", &Communicator::Start)
      .def("push_sparse_param", &Communicator::RpcSendSparseParam)
      .def("is_running", &Communicator::IsRunning)
159
      .def("init_params", &Communicator::InitParams)
160 161 162 163 164
      .def("pull_dense", &Communicator::PullDense)
      .def("create_client_to_client_connection",
           &Communicator::CreateC2CConnection)
      .def("get_client_info", &Communicator::GetClientInfo)
      .def("set_clients", &Communicator::SetClients);
T
tangwei12 已提交
165 166 167 168
}

void BindHeterClient(py::module* m) {
  py::class_<HeterClient, std::shared_ptr<HeterClient>>(*m, "HeterClient")
169 170 171 172 173 174
      .def(py::init([](const std::vector<std::string>& endpoints,
                       const std::vector<std::string>& previous_endpoints,
                       const int& trainer_id) {
        return HeterClient::GetInstance(endpoints, previous_endpoints,
                                        trainer_id);
      }))
T
tangwei12 已提交
175 176 177
      .def("stop", &HeterClient::Stop);
}

S
seemingwang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void BindGraphNode(py::module* m) {
  py::class_<GraphNode>(*m, "GraphNode")
      .def(py::init<>())
      .def("get_id", &GraphNode::get_id)
      .def("get_feature", &GraphNode::get_feature);
}
void BindGraphPyFeatureNode(py::module* m) {
  py::class_<FeatureNode>(*m, "FeatureNode")
      .def(py::init<>())
      .def("get_id", &GraphNode::get_id)
      .def("get_feature", &GraphNode::get_feature);
}

void BindGraphPyService(py::module* m) {
  py::class_<GraphPyService>(*m, "GraphPyService").def(py::init<>());
}

void BindGraphPyServer(py::module* m) {
  py::class_<GraphPyServer>(*m, "GraphPyServer")
      .def(py::init<>())
      .def("start_server", &GraphPyServer::start_server)
      .def("set_up", &GraphPyServer::set_up)
      .def("add_table_feat_conf", &GraphPyServer::add_table_feat_conf);
}
void BindGraphPyClient(py::module* m) {
  py::class_<GraphPyClient>(*m, "GraphPyClient")
      .def(py::init<>())
      .def("load_edge_file", &GraphPyClient::load_edge_file)
      .def("load_node_file", &GraphPyClient::load_node_file)
      .def("set_up", &GraphPyClient::set_up)
      .def("add_table_feat_conf", &GraphPyClient::add_table_feat_conf)
      .def("pull_graph_list", &GraphPyClient::pull_graph_list)
      .def("start_client", &GraphPyClient::start_client)
211 212
      .def("batch_sample_neighboors", &GraphPyClient::batch_sample_neighbors)
      .def("batch_sample_neighbors", &GraphPyClient::batch_sample_neighbors)
213 214
      // .def("use_neighbors_sample_cache",
      //      &GraphPyClient::use_neighbors_sample_cache)
S
seemingwang 已提交
215
      .def("remove_graph_node", &GraphPyClient::remove_graph_node)
S
seemingwang 已提交
216
      .def("random_sample_nodes", &GraphPyClient::random_sample_nodes)
Z
zhaocaibei123 已提交
217
      .def("stop_server", &GraphPyClient::StopServer)
S
seemingwang 已提交
218 219
      .def("get_node_feat",
           [](GraphPyClient& self, std::string node_type,
220
              std::vector<int64_t> node_ids,
S
seemingwang 已提交
221 222 223 224 225 226 227 228 229 230 231
              std::vector<std::string> feature_names) {
             auto feats =
                 self.get_node_feat(node_type, node_ids, feature_names);
             std::vector<std::vector<py::bytes>> bytes_feats(feats.size());
             for (int i = 0; i < feats.size(); ++i) {
               for (int j = 0; j < feats[i].size(); ++j) {
                 bytes_feats[i].push_back(py::bytes(feats[i][j]));
               }
             }
             return bytes_feats;
           })
S
seemingwang 已提交
232 233
      .def("set_node_feat",
           [](GraphPyClient& self, std::string node_type,
234
              std::vector<int64_t> node_ids,
S
seemingwang 已提交
235 236 237 238 239 240 241 242 243 244 245
              std::vector<std::string> feature_names,
              std::vector<std::vector<py::bytes>> bytes_feats) {
             std::vector<std::vector<std::string>> feats(bytes_feats.size());
             for (int i = 0; i < bytes_feats.size(); ++i) {
               for (int j = 0; j < bytes_feats[i].size(); ++j) {
                 feats[i].push_back(std::string(bytes_feats[i][j]));
               }
             }
             self.set_node_feat(node_type, node_ids, feature_names, feats);
             return;
           })
S
seemingwang 已提交
246 247 248
      .def("bind_local_server", &GraphPyClient::bind_local_server);
}

1
123malin 已提交
249 250 251
using paddle::distributed::TreeIndex;
using paddle::distributed::IndexWrapper;
using paddle::distributed::IndexNode;
252 253 254 255 256 257
#ifdef PADDLE_WITH_HETERPS
using paddle::framework::GraphGpuWrapper;
using paddle::framework::NeighborSampleResult;
using paddle::framework::NeighborSampleQuery;
using paddle::framework::NodeQueryResult;
#endif
1
123malin 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

void BindIndexNode(py::module* m) {
  py::class_<IndexNode>(*m, "IndexNode")
      .def(py::init<>())
      .def("id", [](IndexNode& self) { return self.id(); })
      .def("is_leaf", [](IndexNode& self) { return self.is_leaf(); })
      .def("probability", [](IndexNode& self) { return self.probability(); });
}

void BindTreeIndex(py::module* m) {
  py::class_<TreeIndex, std::shared_ptr<TreeIndex>>(*m, "TreeIndex")
      .def(py::init([](const std::string name, const std::string path) {
        auto index_wrapper = IndexWrapper::GetInstancePtr();
        index_wrapper->insert_tree_index(name, path);
        return index_wrapper->get_tree_index(name);
      }))
      .def("height", [](TreeIndex& self) { return self.Height(); })
      .def("branch", [](TreeIndex& self) { return self.Branch(); })
      .def("total_node_nums",
           [](TreeIndex& self) { return self.TotalNodeNums(); })
      .def("emb_size", [](TreeIndex& self) { return self.EmbSize(); })
      .def("get_all_leafs", [](TreeIndex& self) { return self.GetAllLeafs(); })
      .def("get_nodes",
           [](TreeIndex& self, const std::vector<uint64_t>& codes) {
             return self.GetNodes(codes);
           })
      .def("get_layer_codes",
           [](TreeIndex& self, int level) { return self.GetLayerCodes(level); })
      .def("get_ancestor_codes",
           [](TreeIndex& self, const std::vector<uint64_t>& ids, int level) {
             return self.GetAncestorCodes(ids, level);
           })
      .def("get_children_codes",
           [](TreeIndex& self, uint64_t ancestor, int level) {
             return self.GetChildrenCodes(ancestor, level);
           })
      .def("get_travel_codes",
           [](TreeIndex& self, uint64_t id, int start_level) {
             return self.GetTravelCodes(id, start_level);
           });
}

void BindIndexWrapper(py::module* m) {
  py::class_<IndexWrapper, std::shared_ptr<IndexWrapper>>(*m, "IndexWrapper")
      .def(py::init([]() { return IndexWrapper::GetInstancePtr(); }))
      .def("insert_tree_index", &IndexWrapper::insert_tree_index)
      .def("get_tree_index", &IndexWrapper::get_tree_index)
      .def("clear_tree", &IndexWrapper::clear_tree);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#ifdef PADDLE_WITH_HETERPS
void BindNodeQueryResult(py::module* m) {
  py::class_<NodeQueryResult>(*m, "NodeQueryResult")
      .def(py::init<>())
      .def("initialize", &NodeQueryResult::initialize)
      .def("display", &NodeQueryResult::display)
      .def("get_val", &NodeQueryResult::get_val)
      .def("get_len", &NodeQueryResult::get_len);
}
void BindNeighborSampleQuery(py::module* m) {
  py::class_<NeighborSampleQuery>(*m, "NeighborSampleQuery")
      .def(py::init<>())
      .def("initialize", &NeighborSampleQuery::initialize)
      .def("display", &NeighborSampleQuery::display);
}

void BindNeighborSampleResult(py::module* m) {
  py::class_<NeighborSampleResult>(*m, "NeighborSampleResult")
      .def(py::init<>())
      .def("initialize", &NeighborSampleResult::initialize)
S
seemingwang 已提交
328 329
      .def("get_len", &NeighborSampleResult::get_len)
      .def("get_val", &NeighborSampleResult::get_actual_val)
330 331 332 333 334
      .def("display", &NeighborSampleResult::display);
}

void BindGraphGpuWrapper(py::module* m) {
  py::class_<GraphGpuWrapper>(*m, "GraphGpuWrapper")
S
seemingwang 已提交
335
      // nit<>())
336
      //.def("test", &GraphGpuWrapper::test)
S
seemingwang 已提交
337 338 339
      //.def(py::init([]() { return framework::GraphGpuWrapper::GetInstance();
      //}))
      .def(py::init<>())
340 341 342 343 344 345 346 347 348
      .def("neighbor_sample", &GraphGpuWrapper::graph_neighbor_sample_v3)
      .def("graph_neighbor_sample", &GraphGpuWrapper::graph_neighbor_sample)
      .def("set_device", &GraphGpuWrapper::set_device)
      .def("init_service", &GraphGpuWrapper::init_service)
      .def("set_up_types", &GraphGpuWrapper::set_up_types)
      .def("query_node_list", &GraphGpuWrapper::query_node_list)
      .def("add_table_feat_conf", &GraphGpuWrapper::add_table_feat_conf)
      .def("load_edge_file", &GraphGpuWrapper::load_edge_file)
      .def("upload_batch", &GraphGpuWrapper::upload_batch)
S
seemingwang 已提交
349 350 351 352 353 354 355 356 357
      .def("get_all_id", &GraphGpuWrapper::get_all_id)
      .def("load_next_partition", &GraphGpuWrapper::load_next_partition)
      .def("make_partitions", &GraphGpuWrapper::make_partitions)
      .def("make_complementary_graph",
           &GraphGpuWrapper::make_complementary_graph)
      .def("set_search_level", &GraphGpuWrapper::set_search_level)
      .def("init_search_level", &GraphGpuWrapper::init_search_level)
      .def("get_partition_num", &GraphGpuWrapper::get_partition_num)
      .def("get_partition", &GraphGpuWrapper::get_partition)
358 359 360 361
      .def("load_node_file", &GraphGpuWrapper::load_node_file);
}
#endif

1
123malin 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
using paddle::distributed::IndexSampler;
using paddle::distributed::LayerWiseSampler;

void BindIndexSampler(py::module* m) {
  py::class_<IndexSampler, std::shared_ptr<IndexSampler>>(*m, "IndexSampler")
      .def(py::init([](const std::string& mode, const std::string& name) {
        if (mode == "by_layerwise") {
          return IndexSampler::Init<LayerWiseSampler>(name);
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Unsupported IndexSampler Type!"));
        }
      }))
      .def("init_layerwise_conf", &IndexSampler::init_layerwise_conf)
      .def("init_beamsearch_conf", &IndexSampler::init_beamsearch_conf)
      .def("sample", &IndexSampler::sample);
}
T
tangwei12 已提交
379 380
}  // end namespace pybind
}  // namespace paddle