gru_unit_op.h 10.3 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include "paddle/operators/activation_op.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

D
dzhwinter 已提交
31 32 33 34
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

35 36
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };

G
guosheng 已提交
37
template <typename Place, typename T>
38
class GRUUnitKernel : public framework::OpKernel<T> {
G
guosheng 已提交
39
 public:
40 41 42 43 44 45 46 47 48 49 50 51 52 53
  template <typename Device, typename X, typename Y>
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
    if (act_type == identity)
      y.device(d) = x;
    else if (act_type == sigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == tanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == relu)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
54
  void Compute(const framework::ExecutionContext& context) const override {
55 56 57 58 59
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* bias = context.Input<Tensor>("Bias");
    auto* gate = context.Output<Tensor>("Gate");
G
guosheng 已提交
60
    gate->mutable_data<T>(context.GetPlace());
61
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
G
guosheng 已提交
62
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
63
    auto* hidden = context.Output<Tensor>("Hidden");
G
guosheng 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    hidden->mutable_data<T>(context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    auto x = EigenMatrix<T>::From(*input);
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
    auto h = EigenMatrix<T>::From(*hidden);
    auto place = context.GetEigenDevice<Place>();

    // calculate unactivated gate outputs
G
guosheng 已提交
77 78 79 80 81 82 83 84
    if (bias) {
      auto b = EigenMatrix<T>::From(*bias);
      g.device(place) = x +
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    } else {
      g.device(place) = x;
    }
G
guosheng 已提交
85 86 87 88 89 90 91 92 93 94 95 96
    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
    T* gate_data = gate->data<T>();
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
    math::gemm<Place, T>(context.device_context(), false, false, batch_size,
                         2 * frame_size, frame_size, 1, hidden_prev_data,
                         frame_size, weight_data, frame_size * 2, 1, gate_data,
                         frame_size * 3);

    // calculate activited gate
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
97 98
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
G
guosheng 已提交
99 100
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
101 102
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
G
guosheng 已提交
103 104 105 106 107 108 109 110 111
    auto r = g.slice(r_offsets, extents);  // reset gate
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
    math::gemm<Place, T>(context.device_context(), false, false, batch_size,
                         frame_size, frame_size, 1, reset_hidden_prev_data,
                         frame_size, weight_data + frame_size * frame_size * 2,
                         frame_size, 1, gate_data + frame_size * 2,
                         frame_size * 3);

    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
112 113
    ActCompute(context.Attr<int>("activation"), place,
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
G
guosheng 已提交
114 115 116
    auto c = g.slice(c_offsets, extents);  // output candidate

    // calculate final output
G
guosheng 已提交
117
    h.device(place) = u * (c - h_p) + h_p;
G
guosheng 已提交
118 119 120 121
  }
};

template <typename Place, typename T>
122
class GRUUnitGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
123
 public:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
                      DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == identity)
      dx.device(d) = dy;
    else if (act_type == sigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == tanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == relu)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
140
  void Compute(const framework::ExecutionContext& context) const override {
141 142 143 144 145 146 147
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* gate = context.Input<Tensor>("Gate");
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
G
guosheng 已提交
148
    auto* hidden_prev_grad =
149
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
G
guosheng 已提交
150
    auto* weight_grad =
151 152
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
G
guosheng 已提交
153 154 155 156 157
    Tensor gate_grad;
    Tensor reset_hidden_prev_grad;

    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
158 159
    T* gate_grad_data =
        gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
G
guosheng 已提交
160
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
161 162
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.mutable_data<T>(
        reset_hidden_prev->dims(), context.GetPlace());
G
guosheng 已提交
163 164 165 166 167 168 169 170

    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
    auto d_g = EigenMatrix<T>::From(gate_grad);
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
    auto place = context.GetEigenDevice<Place>();

171 172 173
    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

G
guosheng 已提交
174 175 176 177 178 179 180 181 182
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
    auto r = g.slice(r_offsets, extents);  // reset gate
    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
    auto c = g.slice(c_offsets, extents);  // output candidate

    // backward for unactivated update gate
183
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
G
guosheng 已提交
184
                   d_g.slice(u_offsets, extents), d_h * (c - h_p));
G
guosheng 已提交
185
    // backward for unactivated output candidate
186
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
G
guosheng 已提交
187
                   d_g.slice(c_offsets, extents), d_h * u);
G
guosheng 已提交
188 189 190 191 192 193 194
    // backward for reset_hidden_prev
    math::gemm<Place, T>(context.device_context(), false, true, batch_size,
                         frame_size, frame_size, 1,
                         gate_grad_data + frame_size * 2, frame_size * 3,
                         weight_data + frame_size * frame_size * 2, frame_size,
                         0, reset_hidden_prev_grad_data, frame_size);
    // backward for unactivated reset gate
195 196
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    // backward for weight
    if (weight_grad) {
      T* weight_grad_data = weight_grad->mutable_data<T>(context.GetPlace());
      // backward for state_weight
      math::gemm<Place, T>(
          context.device_context(), true, false, frame_size, frame_size,
          batch_size, 1, reset_hidden_prev_data, frame_size,
          gate_grad_data + frame_size * 2, frame_size * 3, 0,
          weight_grad_data + frame_size * frame_size * 2, frame_size);

      // backward for update_gate_weight and reset_gate_weight
      math::gemm<Place, T>(context.device_context(), true, false, frame_size,
                           frame_size * 2, batch_size, 1, hidden_prev_data,
                           frame_size, gate_grad_data, frame_size * 3, 0,
                           weight_grad_data, frame_size * 2);
    }
G
guosheng 已提交
213
    // backward for hidden_prev
214 215 216 217 218 219 220 221 222 223
    if (hidden_prev_grad) {
      T* hidden_prev_grad_data =
          hidden_prev_grad->mutable_data<T>(context.GetPlace());
      auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
      d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u);
      math::gemm<Place, T>(context.device_context(), false, true, batch_size,
                           frame_size, frame_size * 2, 1, gate_grad_data,
                           frame_size * 3, weight_data, frame_size * 2, 1,
                           hidden_prev_grad_data, frame_size);
    }
G
guosheng 已提交
224
    // backward for input
225 226 227 228 229
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto d_x = EigenMatrix<T>::From(*input_grad);
      d_x.device(place) = d_g;
    }
G
guosheng 已提交
230
    // backward for bias
G
guosheng 已提交
231 232
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
233
      auto d_b = EigenVector<T>::Flatten(*bias_grad);
G
guosheng 已提交
234 235
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
    }
G
guosheng 已提交
236 237 238 239 240
  }
};

}  // namespace operators
}  // namespace paddle