prelu_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

12
#include <memory>
13
#include <string>
14

15 16 17 18 19
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/binary.h"
Z
zchen0211 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25
using Tensor = framework::Tensor;

J
Jacek Czaja 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
framework::OpKernelType innerGetKernelTypeForVar(
    const Tensor &tensor, const framework::OpKernelType &expected_kernel_type) {
#ifdef PADDLE_WITH_MKLDNN
  auto isOneDNNKernelChosen =
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN);
  auto isNotOneDNNTensor = (tensor.layout() != framework::DataLayout::kMKLDNN);
  auto isModelNHWC =
      (paddle::platform::MKLDNNDeviceContext::tls()
           .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC);
  // All inputs (including alpha) need shape rotating
  if (isOneDNNKernelChosen && isNotOneDNNTensor && isModelNHWC) {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::DataLayout::kNHWC);
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Z
fix  
zchen0211 已提交
46
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
47
 public:
Z
fix  
zchen0211 已提交
48
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
49 50 51 52
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

J
jerrywgz 已提交
53 54 55
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
56 57 58 59 60 61 62 63 64 65 66
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
J
jerrywgz 已提交
67
  }
J
Jacek Czaja 已提交
68 69 70 71 72 73

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    return innerGetKernelTypeForVar(tensor, expected_kernel_type);
  }
Z
zchen0211 已提交
74 75
};

Z
fix  
zchen0211 已提交
76
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
77
 public:
Y
Yu Yang 已提交
78
  void Make() override {
Z
zchen0211 已提交
79
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
80 81 82 83
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
84
The equation is:
K
kexinzhao 已提交
85 86 87 88 89 90 91
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
92
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
93
or not. And the output shares the LoD information with input `X`.
94
There are modes:
J
jerrywgz 已提交
95 96
  all: all elements share same weight
  channel: elements in a channel share same weight
97
  element: each element has a weight
Z
zchen0211 已提交
98
)DOC");
J
jerrywgz 已提交
99 100
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
101 102 103
    AddAttr<std::string>("data_format",
                         "Data format that specifies the layout of input")
        .SetDefault("NCHW");
104 105
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
C
cc 已提交
106 107
        .SetDefault(false)
        .AsExtra();
108 109 110 111
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
C
cc 已提交
112 113
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
114 115 116
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
C
cc 已提交
117 118
        .SetDefault(false)
        .AsExtra();
Z
zchen0211 已提交
119 120 121 122
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
123
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
124 125 126
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

127
  void InferShape(framework::InferShapeContext *ctx) const override {
128 129 130 131
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "prelu");

J
jerrywgz 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
146 147 148 149 150 151 152 153 154 155 156
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Z
zchen0211 已提交
157
  }
J
Jacek Czaja 已提交
158 159 160 161 162 163

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    return innerGetKernelTypeForVar(tensor, expected_kernel_type);
  }
Z
zchen0211 已提交
164 165
};

166 167 168 169 170 171
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
172
  void Apply(GradOpPtr<T> op) const override {
173 174 175 176 177 178 179 180 181 182
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());
  }
};

Z
zchen0211 已提交
183 184 185 186 187
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

188 189
DECLARE_INFER_SHAPE_FUNCTOR(prelu, PReluInferShapeFunctor,
                            PD_INFER_META(phi::PReluInferMeta));
190 191
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
192 193
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>,
                  PReluInferShapeFunctor);
194
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);