reshape_mkldnn_op.cc 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16 17 18
#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

19 20 21 22 23 24 25 26 27 28 29
namespace {
enum class ReshapeKernelOpName {
  reshape,
  reshape2,
  squeeze,
  squeeze2,
  flatten,
  flatten2,
};
}  // anonymous namespace

30 31 32 33 34
namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
using platform::GetMKLDNNFormat;
35
using platform::to_void_cast;
36

J
jakpiase 已提交
37 38 39 40 41 42 43
static std::vector<int> extract_shape(
    const std::vector<const Tensor*>& list_new_shape_tensor) {
  std::vector<int> vec_new_shape;
  vec_new_shape.reserve(list_new_shape_tensor.size());

  for (const auto& tensor : list_new_shape_tensor) {
    PADDLE_ENFORCE_EQ(
44
        tensor->dims(), phi::make_ddim({1}),
J
jakpiase 已提交
45 46 47 48 49 50 51 52 53 54 55
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
    vec_new_shape.emplace_back(*tensor->data<int32_t>());
  }

  return vec_new_shape;
}

56
template <typename T, ReshapeKernelOpName op_name>
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");

72 73
    framework::DDim x_dims, out_dims;
    InferInOutShape(ctx, x_dims, out_dims);
74

75
    auto x_vec_dims = phi::vectorize(x_dims);
76

77 78 79 80 81
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
        x_vec_dims, framework::TransToProtoVarType(x->dtype()), x_type,
        onednn_engine);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->format(), platform::to_void_cast(x->data<T>()));
    out->Resize(x_dims);  // to match x numel, format is changed later
    // reorder is done into a plain tag to allow usage with blocked formats
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        out, getPlainFormatTag(x), ctx.GetPlace());
    auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                    reorder_dst_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

    astream.wait();

    out->Resize(out_dims);
    out->set_layout(framework::DataLayout::kMKLDNN);
99
    out->set_format(GetMKLDNNFormat(
100
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(out_dims))));
101 102
  }

103
  void InferInOutShape(const framework::ExecutionContext& ctx,
104 105
                       framework::DDim& x_dims,            // NOLINT
                       framework::DDim& out_dims) const {  // NOLINT
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeSqueezeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeSqueeze2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape kernel doesn not support that operator name"));
    }
  }

  void InferShapeReshapeOp(const framework::ExecutionContext& ctx,
132 133
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
134 135 136 137 138 139 140 141
    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    x_dims = x->dims();
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  void InferShapeReshape2Op(const framework::ExecutionContext& ctx,
142 143
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
144 145 146
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
147
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
148 149 150 151 152 153
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  // in reshape1/2 ops  "ShapeTensor" has highest priority and "Shape" has
  // second highest priority
154 155 156 157
  void ChangeReshapeOutDimsIfNeeded(
      const framework::ExecutionContext& ctx,
      framework::DDim& x_dims,            // NOLINT
      framework::DDim& out_dims) const {  // NOLINT
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    auto list_new_shape_tensor = ctx.MultiInput<Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      auto new_shape = extract_shape(list_new_shape_tensor);
      out_dims = ValidateShape(new_shape, x_dims);
    } else if (ctx.HasInput("Shape")) {
      auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
      auto* shape_data = shape_tensor->data<int>();

      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ValidateShape(shape, x_dims);
    }
  }

  void InferShapeSqueezeOp(const framework::ExecutionContext& ctx,
173 174
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
175 176 177 178 179 180 181
    auto* x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    const auto& axes = ctx.Attr<std::vector<int>>("axes");
    out_dims = GetOutputShape(axes, x_dims, true);
  }

  void InferShapeSqueeze2Op(const framework::ExecutionContext& ctx,
182 183
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
184 185 186
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
187
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
188 189 190 191
    out_dims = out->dims();
  }

  void InferShapeFlattenOp(const framework::ExecutionContext& ctx,
192 193
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
194 195 196
    auto x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    auto axes = ctx.Attr<int>("axis");
197
    out_dims = phi::make_ddim(
198 199 200 201
        FlattenKernel<platform::CPUDeviceContext, float>::GetOutputShape(
            axes, x_dims));
  }

202
 protected:
203
  static dnnl::memory::format_tag getPlainFormatTag(const Tensor* tensor) {
204 205 206 207 208 209 210 211
    auto tensor_dims_size = tensor->dims().size();
    PADDLE_ENFORCE_EQ(
        tensor_dims_size <= 6 && tensor_dims_size >= 1, true,
        platform::errors::InvalidArgument(
            "Dims for squeeze_grad oneDNN op must be in range <1, 6>"));

    switch (tensor_dims_size) {
      case 1:
212
        return dnnl::memory::format_tag::a;
213
      case 2:
214
        return dnnl::memory::format_tag::ab;
215
      case 3:
216
        return dnnl::memory::format_tag::abc;
217
      case 4:
218
        return dnnl::memory::format_tag::abcd;
219
      case 5:
220
        return dnnl::memory::format_tag::abcde;
221
      default:
222
        return dnnl::memory::format_tag::abcdef;
223 224 225 226 227
    }
  }

  static framework::DDim ValidateShape(const std::vector<int>& shape,
                                       const framework::DDim& in_dims) {
228 229
    const int64_t in_size = phi::product(in_dims);
    auto in_dims_vec = phi::vectorize(in_dims);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
    // only one dimension can be set to -1, whose size will be automatically
    // infered
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
247
                phi::make_ddim(shape), i));
248 249 250 251 252 253 254 255 256
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
257
                phi::make_ddim(shape), i, in_dims, in_dims.size()));
258 259 260 261 262 263 264
      } else {
        PADDLE_ENFORCE_GT(
            shape[i], 0,
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
                "be negative except one unknown dimension. "
                "But received  shape = [%s], shape[%d] = %d.",
265
                phi::make_ddim(shape), i, shape[i]));
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (all_positive) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
                "'shape' is [%s], known capacity of 'shape' is %d.",
288
                in_dims, in_size, phi::make_ddim(shape), capacity));
289 290 291 292 293 294 295 296 297 298 299 300 301
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
302
                in_dims, in_size, phi::make_ddim(shape), capacity));
303 304
      }
    }
305
    return phi::make_ddim(output_shape);
306 307 308
  }
};

309 310
template <typename T, ReshapeKernelOpName op_name>
class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
311 312 313 314 315 316 317 318 319 320 321 322 323 324
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

325 326 327
    framework::DDim dx_dims;
    InferOutputShapeInGrad(ctx, dx_dims);

328
    auto dout_vec_dims = phi::vectorize(dout->dims());
329

330 331 332 333 334
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
        dout_vec_dims, framework::TransToProtoVarType(dout->dtype()), dout_type,
        onednn_engine);
335 336 337 338 339 340 341 342 343 344 345 346

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        dout->format(), platform::to_void_cast(dout->data<T>()));
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        dx, this->getPlainFormatTag(dout), ctx.GetPlace());
    auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                    reorder_dst_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
    astream.wait();

347
    dx->Resize(dx_dims);
348
    dx->set_layout(framework::DataLayout::kMKLDNN);
349
    dx->set_format(GetMKLDNNFormat(
350
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(dx_dims))));
351 352
  }

353
  void InferOutputShapeInGrad(const framework::ExecutionContext& ctx,
354
                              framework::DDim& x_dims) const {  // NOLINT
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape grad kernel doesn not support that operator name"));
    }
  }
379

380 381 382
  void InferShapeReshapeSqueezeGradOp(
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
383 384 385
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    dx_dims = dx->dims();
  }
386

387
  void InferShapeReshape2Squeeze2Flatten2GradOp(
388 389
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
390
    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
391
    dx_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
392
  }
393

394
  void InferShapeFlattenGradOp(const framework::ExecutionContext& ctx,
395
                               framework::DDim& dx_dims) const {  // NOLINT
396 397 398 399 400
    dx_dims = ctx.Input<LoDTensor>("X")->dims();
  }
};
}  // namespace operators
}  // namespace paddle
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
    squeeze, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
    squeeze_grad, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
    squeeze2, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
    squeeze2_grad, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
    reshape, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
    reshape_grad, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
    reshape2, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
    reshape2_grad, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
    flatten, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
    flatten_grad, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
    flatten2, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten2>);

REGISTER_OP_KERNEL(
    flatten2_grad, MKLDNN, paddle::platform::CPUPlace,
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten2>);