pool_mkldnn_op.cc 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
From00 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
F
From00 已提交
18
#include "paddle/phi/kernels/funcs/pooling.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28
using dnnl::memory;
using dnnl::pooling_backward;
using dnnl::pooling_forward;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
29 30
using framework::DataLayout;
using framework::Tensor;
31
using platform::to_void_cast;
32

33 34
template <typename T>
class PoolingMKLDNNHandler
35 36
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                               dnnl::pooling_backward> {
37 38
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
39
                       const dnnl::engine mkldnn_engine, const Tensor* input,
40
                       Tensor* output)
41 42
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            mkldnn_engine, ctx.GetPlace()) {
    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg", true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
78
        phi::slice_ddim(input_dims, 2, input_dims.size());
79 80

    if (global_pooling) {
F
From00 已提交
81
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
82
    }
83

F
From00 已提交
84 85
    phi::funcs::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                              data_dims, strides, ksize);
86

87
    const auto is_test = ctx.Attr<bool>("is_test");
88 89 90
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
91

92 93
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(input->dtype()));
94 95
    const auto src_tz = phi::vectorize(input->dims());
    const auto dst_tz = phi::vectorize(output->dims());
96 97
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
98

99 100 101
    if (ceil_mode) {
      CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
102
    }
103 104 105 106

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
107 108
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
109
        pooling_type == "max"
110 111 112
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
113 114
        input->mem_desc(), dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
115 116 117
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
118
                       const dnnl::engine mkldnn_engine, const Tensor* in_x,
119 120
                       const Tensor* out_grad, Tensor* in_x_grad)

121 122
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
144
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
145 146

    if (global_pooling) {
F
From00 已提交
147
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
148
    }
149

F
From00 已提交
150 151
    phi::funcs::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                              data_dims, strides, ksize);
152

153 154 155
    auto src_tz = phi::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = phi::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = phi::vectorize<int64_t>(out_grad->dims());
156

157 158
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(in_x->dtype()));
159 160
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_src_md = dnnl::memory::desc(
161 162 163 164 165 166 167 168
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
169
    }
170 171 172 173 174
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
175
        dnnl::prop_kind::forward_training,
176
        pooling_type == "max"
177 178 179
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
180 181
        in_x->mem_desc(), dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
182 183 184

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
185 186 187
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
188
        diff_src_md, out_grad->mem_desc(), strides, ksize, mkldnn_paddings[0],
189
        mkldnn_paddings[1]);
190 191
  }

192
  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
193 194
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
195
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
196
    // Pooling Workspace has to be passed to Grad op that
197 198
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
199 200 201
    std::string workspace_key =
        platform::CreateKey(dev_ctx, workspace_md.dims(),
                            workspace_md.data_type(), unique_name, "@wrk");
202 203
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
204 205 206 207
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
208
      mem_p = std::static_pointer_cast<dnnl::memory>(
209
          dev_ctx.GetBlob(workspace_key));
210
      if (mem_p == nullptr) {
211
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
212
        dev_ctx.SetBlob(workspace_key, mem_p);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

261 262 263 264
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
265 266 267
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
268 269 270 271 272 273
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

274
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);
275 276 277 278

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
279
    auto pool_p = handler.AcquireForwardPrimitive();
280

281
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
282 283
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
284
      // Training
285 286
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
287 288 289
      pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                                {DNNL_ARG_DST, *dst_memory},
                                {DNNL_ARG_WORKSPACE, *workspace_memory}});
290 291
    } else {
      // Inference
292 293
      pool_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
294
    }
A
Adam 已提交
295
    astream.wait();
296

297
    output->set_mem_desc(dst_memory->get_desc());
298 299 300 301 302 303 304
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
305 306 307
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
308 309 310 311 312 313 314
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

315 316
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), in_x, out_grad,
                                    in_x_grad);
317 318 319 320

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
321
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
322

323
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
324
    if (ctx.Attr<std::string>("pooling_type") == "max") {
325
      // Max - pooling needs Workspace
326 327
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
328 329 330
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                                    {DNNL_ARG_WORKSPACE, *workspace_memory}});
331 332
    } else {
      // Average Pooling
333 334
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
335
    }
A
Adam 已提交
336
    astream.wait();
337

338
    in_x_grad->set_mem_desc(diff_src_memory->get_desc());
339 340 341 342 343 344
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

345 346
namespace ops = paddle::operators;

347
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
348 349
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
350 351
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
352

353
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
A
arlesniak 已提交
354 355
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);