accumulation_node.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
16 17

#include "glog/logging.h"
18
#include "paddle/fluid/eager/eager_tensor.h"
19
#include "paddle/fluid/imperative/gradient_accumulator.h"
20 21 22
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
23 24
#include "paddle/phi/api/all.h"
#include "paddle/phi/core/dense_tensor.h"
25

26 27
namespace egr {

28
static void CopyOrAddTensor(paddle::experimental::Tensor* tensor,
J
Jiabin Yang 已提交
29 30 31
                            const paddle::experimental::Tensor& t,
                            bool is_fake_empty) {
  if (is_fake_empty) {
32 33
    *tensor = t;
  } else {
J
Jiabin Yang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    if (!tensor->defined() || !tensor->initialized()) {
      // Simply copy tensor->impl
      *tensor = t;
    } else {
      // Accumulation
      if (LIKELY(t.is_dense_tensor())) {
        if (LIKELY(tensor->is_dense_tensor())) {
          paddle::imperative::TensorAdd<paddle::experimental::Tensor>(t,
                                                                      tensor);
        } else {
          // TODO(jiabin): Support Other TensorBase later
          // TODO(zhanlve): Replace SelectedRowsAddTensor with
          // add_dygraph_function once it's supported
          paddle::experimental::Tensor new_buffer(
              std::make_shared<phi::DenseTensor>(), "tmp_accumulator");
          paddle::imperative::SelectedRowsAddTensor(*tensor, t, &new_buffer);
          tensor->set_impl(new_buffer.impl());
        }
52 53 54
      } else {
        // TODO(jiabin): Support Other TensorBase later
        // TODO(zhanlve): Replace SelectedRowsAddTensor with
J
Jiabin Yang 已提交
55 56 57 58 59 60 61 62
        // add_dygraph_function
        // once it's supported
        if (tensor->is_dense_tensor()) {
          paddle::imperative::SelectedRowsAddToTensor(t, tensor);
        } else {
          *tensor = std::move(*paddle::imperative::SelectedRowsMerge<
                              paddle::experimental::Tensor>(t, *tensor));
        }
63 64
      }
    }
65 66 67
  }
}

68 69 70 71 72
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                     kSlotSmallVectorSize>
GradNodeAccumulation::operator()(
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>& grads,  // NOLINT
73
    bool create_graph, bool is_new_grad) {
74
  VLOG(3) << "Running Eager Backward Node: GradNodeAccumulation";
75 76 77 78 79 80 81 82 83 84 85
  PADDLE_ENFORCE(grads.size() == 1,
                 paddle::platform::errors::Fatal(
                     "GradNodeAccumulation should take exactly 1 grad tensor"
                     "However received: %d slot.",
                     grads.size()));
  PADDLE_ENFORCE(grads[0].size() == 1,
                 paddle::platform::errors::Fatal(
                     "GradNodeAccumulation should take exactly 1 grad tensor"
                     "However received: %d in slot %d .",
                     grads[0].size(), 0));
  // Apply Gradient Hooks
86
  paddle::experimental::Tensor grad_out;
87
  if (GradientHooksRegistered()) {
88 89 90
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>
        hooked_grads = ApplyGradientHooks(grads);
91
    grad_out = hooked_grads[0][0];
92
  } else {
93
    grad_out = grads[0][0];
94 95
  }

96
  if (!weak_grad_.expired() && !is_new_grad) {
97
    auto grad = weak_grad_.lock();
J
Jiabin Yang 已提交
98 99
    CopyOrAddTensor(grad.get(), grad_out, is_fake_empty_);
    is_fake_empty_ = false;
100 101 102 103 104 105 106
  }

  // Apply Reduce Hooks
  if (ReduceHooksRegistered()) {
    ApplyReduceHooks();
  }

107
  return {{grad_out}};
108 109
}

110
void GradNodeAccumulation::RegisterReduceHook(
111 112
    std::shared_ptr<TensorVoidHook>&& hook) {
  reduce_hooks_.emplace_back(std::move(hook));
113 114 115 116
}

void GradNodeAccumulation::ApplyReduceHooks() {
  for (auto& hook : reduce_hooks_) {
117
    (*hook)();
118 119
  }
}
120
}  // namespace egr