test_image_classification.py 10.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
import paddle.fluid as fluid
17
import contextlib
18 19
import math
import sys
20 21
import numpy
import unittest
武毅 已提交
22
import os
23
import numpy as np
Q
Qiao Longfei 已提交
24 25


26
def resnet_cifar10(input, depth=32):
27 28 29 30 31 32 33
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
34
        tmp = fluid.layers.conv2d(
Q
Qiao Longfei 已提交
35 36 37 38 39 40
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
41
            bias_attr=bias_attr)
42
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
43

44
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
45
        if ch_in != ch_out:
46
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
47 48 49
        else:
            return input

Q
Qiao Longfei 已提交
50 51
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
52
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
53
        short = shortcut(input, ch_in, ch_out, stride)
54
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
55

56 57
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
58
        for i in range(1, count):
59
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
60 61 62
        return tmp

    assert (depth - 2) % 6 == 0
M
minqiyang 已提交
63
    n = (depth - 2) // 6
Q
Qiao Longfei 已提交
64
    conv1 = conv_bn_layer(
Q
Qiao Longfei 已提交
65 66 67 68
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
69
    pool = fluid.layers.pool2d(
Q
Qiao Longfei 已提交
70
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
Q
Qiao Longfei 已提交
71 72 73
    return pool


74
def vgg16_bn_drop(input):
Q
Qiao Longfei 已提交
75
    def conv_block(input, num_filter, groups, dropouts):
76
        return fluid.nets.img_conv_group(
Q
Qiao Longfei 已提交
77 78 79 80 81 82 83 84
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
85
            pool_type='max')
Q
Qiao Longfei 已提交
86

87 88 89 90 91
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
92

93
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
94
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
95
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
96
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
97
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
Q
Qiao Longfei 已提交
98 99 100
    return fc2


武毅 已提交
101
def train(net_type, use_cuda, save_dirname, is_local):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
119
    avg_cost = fluid.layers.mean(cost)
120 121
    acc = fluid.layers.accuracy(input=predict, label=label)

122
    # Test program
123
    test_program = fluid.default_main_program().clone(for_test=True)
124 125

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
126
    optimizer.minimize(avg_cost)
127 128 129 130 131 132 133 134 135

    BATCH_SIZE = 128
    PASS_NUM = 1

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10(), buf_size=128 * 10),
        batch_size=BATCH_SIZE)

136 137 138
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)

139 140 141
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

166
                    print(
武毅 已提交
167 168
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                        format(pass_id, batch_id + 1,
169
                               float(avg_loss_value), float(acc_value)))
武毅 已提交
170 171 172 173 174 175 176 177 178

                    if acc_value > 0.01:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                      [predict], exe)
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
179 180
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
181 182 183 184
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
185
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
186
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
187 188
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
189
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
190
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
191 192 193 194 195 196 197 198
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
199 200 201 202 203 204 205 206 207


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

208 209 210 211 212 213 214 215 216 217 218 219 220 221
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

L
Luo Tao 已提交
222 223 224
        # Use inference_transpiler to speedup
        inference_transpiler_program = inference_program.clone()
        t = fluid.InferenceTranspiler()
L
Luo Tao 已提交
225
        t.transpile(inference_transpiler_program, place)
L
Luo Tao 已提交
226

227 228 229 230 231
        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
232 233 234 235 236 237 238

        transpiler_results = exe.run(inference_transpiler_program,
                                     feed={feed_target_names[0]: tensor_img},
                                     fetch_list=fetch_targets)

        assert len(results[0]) == len(transpiler_results[0])
        for i in range(len(results[0])):
239
            np.testing.assert_almost_equal(
240
                results[0][i], transpiler_results[0][i], decimal=5)
241

242
        print("infer results: ", results[0])
243

244 245 246 247
        fluid.io.save_inference_model(save_dirname, feed_target_names,
                                      fetch_targets, exe,
                                      inference_transpiler_program)

248

武毅 已提交
249
def main(net_type, use_cuda, is_local=True):
250 251 252 253 254 255
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "image_classification_" + net_type + ".inference.model"

武毅 已提交
256
    train(net_type, use_cuda, save_dirname, is_local)
257
    infer(use_cuda, save_dirname)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288


class TestImageClassification(unittest.TestCase):
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()