base.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import contextlib
16
import sys
17 18 19
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
M
minqiyang 已提交
20
from .tracer import Tracer
Z
Zeng Jinle 已提交
21
import logging
J
Jiabin Yang 已提交
22
import objgraph
23

24 25 26
__all__ = [
    'no_grad',
    'guard',
27 28 29
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
30 31
    'to_variable',
]
32 33


34 35 36 37 38 39 40 41 42 43 44
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


45 46 47 48 49 50 51 52 53 54 55
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
    yield
    if tracer:
        tracer._enable_program_desc_tracing = original_val


56 57 58
_functional_dygraph_context_manager = None


59
def enabled():
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
83
    return framework.in_dygraph_mode()
84 85


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
def enable_dygraph(place=None):
    """
    This function enables dynamic graph mode.

    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph.
            If None, the running place will be determined according to the way of paddle compilation. Default: None

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
    _functional_dygraph_context_manager = guard(place=place)
    _functional_dygraph_context_manager.__enter__()


def disable_dygraph():
    """
    This function disables dynamic graph mode.

    return:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


135 136 137 138 139 140 141 142 143 144 145 146 147
@contextlib.contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
        mode = tracer._train_mode
        tracer._train_mode = is_train
        yield
        tracer._train_mode = mode
    else:
        yield


def _no_grad_(func):
148 149 150
    """
    This Decorator will avoid the func being decorated creating backward network in dygraph mode

151 152
    Parameter:
        - **func** (python func): the func don't need grad
153 154 155 156 157 158 159 160 161 162 163

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
164
                inp = np.ones([3, 1024], dtype='float32')
165
                t = fluid.dygraph.base.to_variable(inp)
166 167 168 169
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)
170 171 172 173 174

        test_layer()

    """

175 176 177 178 179 180 181 182
    def __impl__(*args, **kwargs):
        with _switch_tracer_mode_guard_(is_train=False):
            return func(*args, **kwargs)

    return __impl__


no_grad = wrap_decorator(_no_grad_)
L
lujun 已提交
183 184
# for fluidDoc
no_grad.__doc__ = _no_grad_.__doc__
185 186


S
rename  
sneaxiy 已提交
187
@signature_safe_contextmanager
P
Paddle CI 已提交
188
def guard(place=None):
189
    """
190
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
191

192 193 194
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
195 196 197 198 199 200 201 202 203 204 205 206

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
207
            inp = np.ones([3, 1024], dtype='float32')
208
            t = fluid.dygraph.base.to_variable(inp)
209 210 211 212
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
213 214

    """
215 216
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
217
    tracer = Tracer()
218
    VarBase = core.VarBase
M
minqiyang 已提交
219

P
Paddle CI 已提交
220
    if place is None:
M
minqiyang 已提交
221
        if core.is_compiled_with_cuda():
P
Paddle CI 已提交
222
            place = core.CUDAPlace(0)
M
minqiyang 已提交
223 224
        else:
            place = core.CPUPlace()
225
    tracer._expected_place = place
M
minqiyang 已提交
226

227 228
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
229 230
            with framework._dygraph_guard(tracer):
                with framework._dygraph_place_guard(place):
P
Paddle CI 已提交
231
                    yield
232 233


234
def _print_debug_msg(parameter_list, limit=5, is_test=False):
Z
Zeng Jinle 已提交
235 236 237 238 239 240
    if not core._is_dygraph_debug_enabled():
        logging.warn(
            'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
        )
        return
    unique_name_size = len(framework.unique_name.generator.ids)
241
    tracer_var_size = len(parameter_list)
Z
Zeng Jinle 已提交
242
    alive_cpp_var_size = len(core.VarBase._alive_vars())
J
Jiabin Yang 已提交
243 244 245 246 247 248 249
    if not is_test:
        logging.warn(
            'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
            .format(unique_name_size, tracer_var_size, alive_cpp_var_size))
        objgraph.show_growth(limit=limit)
    else:
        return unique_name_size, tracer_var_size, alive_cpp_var_size
Z
Zeng Jinle 已提交
250 251


252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
         no_grad_set=None,
         create_graph=False,
         backward_strategy=None):
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
                assert isinstance(
                    each_var,
                    core.VarBase), "Elements of {} must be Variable".format(
                        name)
            return in_out_list
        else:
            assert isinstance(
                in_out_list,
                core.VarBase), "{} must be Variable or list of Variable".format(
                    name)
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
                assert isinstance(
                    each_var, core.VarBase
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

    if no_grad_set is None:
        no_grad_set = []
    elif isinstance(no_grad_set, core.VarBase):
        no_grad_set = [no_grad_set]
    elif isinstance(no_grad_set, (list, tuple, set)):
        no_grad_set = list(no_grad_set)
        for var in no_grad_set:
            assert isinstance(
                var, core.VarBase), "no_grad_set can only contains Variable"
    else:
        raise AssertionError(
            "no_grad_set must be None, Variable or list/tuple/set of Variables")

    if backward_strategy is None:
        backward_strategy = core.BackwardStrategy()

    assert isinstance(backward_strategy, core.BackwardStrategy), \
        "backward_strategy must be type paddle.fluid.dygraph.BackwardStrategy"

    assert isinstance(create_graph, bool), "create_graph must be True or False"

    place = core.Place()
    place.set_place(framework._current_expected_place())
    return core.dygraph_partial_grad(inputs, outputs, grad_outputs, no_grad_set,
                                     place, backward_strategy, create_graph)


323
@framework.dygraph_only
324
def to_variable(value, name=None, zero_copy=None):
325
    """
326
    The API will create a ``Variable`` object from numpy\.ndarray or Variable object.
327

328
    Parameters:
329
        value(ndarray|Variable): The numpy\.ndarray or Variable object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
330
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
331
        zero_copy(bool, optional): Whether to share memory with the input numpy array. This parameter only works with CPUPlace and will be set to True when it is None. Default: None.
332

333
    Returns:
334 335
        Variable: If ``value`` is a numpy\.ndarray object, return ``Tensor`` created from the specified numpy\.ndarray object, which has same data type and shape with ``value``. If ``value`` is a Variable object, just return ``value``.

336 337 338 339 340 341 342 343

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

344
        with fluid.dygraph.guard(fluid.CPUPlace()):
345
            x = np.ones([2, 2], np.float32)
346 347 348
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
349
            y = fluid.dygraph.to_variable(x)
350 351
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
352 353

    """
354
    if isinstance(value, np.ndarray):
L
lujun 已提交
355 356
        assert framework.in_dygraph_mode(
        ), "to_variable could only be called in dygraph mode"
357 358 359 360 361 362
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
            if zero_copy is None:
                zero_copy = True
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
363 364 365 366
            zero_copy = False
        py_var = core.VarBase(
            value=value,
            place=framework._current_expected_place(),
L
Leo Chen 已提交
367 368 369
            persistable=False,
            zero_copy=zero_copy,
            name=name if name else '')
370
        return py_var
371
    elif isinstance(value, (core.VarBase, framework.Variable)):
372
        return value
373 374 375
    else:
        raise TypeError(
            "to_variable only accepts 'ndarray' and 'Variable' as value's input")