graph.py 11.0 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
F
fengjiayi 已提交
2
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
Y
Yu Yang 已提交
3
import collections
Y
Yu Yang 已提交
4
import numpy as np
Y
Yu Yang 已提交
5
import copy
Y
Yu Yang 已提交
6

Y
Yu Yang 已提交
7
__all__ = ['Block', 'Variable', 'Program', 'Operator']
Y
Yu Yang 已提交
8 9 10


class Variable(object):
Y
Yu Yang 已提交
11 12 13 14 15 16 17
    def __init__(self,
                 block,
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
                 **kwargs):
Y
Yu Yang 已提交
18 19 20 21
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
Y
Yu Yang 已提交
22
        try:
23
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
24 25
            is_new_var = False
        except core.EnforceNotMet:
26
            self.desc = self.block.desc.new_var(name)
Y
Yu Yang 已提交
27
            is_new_var = True
Y
Yu Yang 已提交
28 29

        if shape is not None:
Y
Yu Yang 已提交
30
            if is_new_var:
31
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
32 33 34 35 36 37 38 39
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
40
        if dtype is not None:
Y
Yu Yang 已提交
41 42
            if not isinstance(dtype, core.DataType):
                dtype = Variable._convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
43
            if is_new_var:
44
                self.desc.set_data_type(dtype)
Y
Yu Yang 已提交
45 46 47 48 49 50 51 52
            else:
                old_dtype = self.data_type()
                if dtype != old_shape:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
53 54

        if lod_level is not None:
Y
Yu Yang 已提交
55
            if is_new_var:
56
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
57 58 59 60 61 62 63
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
Y
Yu Yang 已提交
64
        self.block.vars[name] = self
Y
Yu Yang 已提交
65
        self.op = None
Y
Yu Yang 已提交
66

Y
Yu Yang 已提交
67 68
    @property
    def name(self):
69
        return self.desc.name()
Y
Yu Yang 已提交
70 71 72 73

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
74
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
75 76 77

    @property
    def data_type(self):
78
        return self.desc.data_type()
Y
Yu Yang 已提交
79 80 81

    @property
    def lod_level(self):
82
        return self.desc.lod_level()
Y
Yu Yang 已提交
83 84 85 86 87 88

    @staticmethod
    def _unique_var_name_():
        uid = core.unique_integer()  # unique during whole process.
        return "_generated_var_%d" % uid

Y
Yu Yang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    @staticmethod
    def _convert_np_dtype_to_dtype_(np_dtype):
        dtype = np.dtype(np_dtype)
        if dtype == np.float32:
            return core.DataType.FP32
        elif dtype == np.float64:
            return core.DataType.FP64
        elif dtype == np.float16:
            return core.DataType.FP16
        elif dtype == np.int32:
            return core.DataType.INT32
        elif dtype == np.int16:
            return core.DataType.INT16
        elif dtype == np.int64:
            return core.DataType.INT64
        elif dtype == np.bool:
            return core.DataType.BOOL
        else:
            raise ValueError("Not supported numpy dtype " + str(dtype))

Y
Yu Yang 已提交
109

F
fengjiayi 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
    :return: A list of registered OpProto.
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
        assert type in self.op_proto_map, "Operator \"%s\" has not been registered." % type
        return self.op_proto_map[type]


Y
Yu Yang 已提交
144
class Operator(object):
F
fengjiayi 已提交
145 146 147 148 149 150
    def __init__(self,
                 block,
                 desc,
                 type=None,
                 inputs=None,
                 outputs=None,
Y
Yu Yang 已提交
151 152
                 attrs=None):
        self.block = block
F
Update  
fengjiayi 已提交
153
        self.desc = desc
F
fengjiayi 已提交
154 155 156 157 158
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
159
        self.desc.set_type(type)
F
fengjiayi 已提交
160
        proto = OpProtoHolder.instance().get_op_proto(type)
F
Update  
fengjiayi 已提交
161

Y
Yu Yang 已提交
162
        if inputs is not None:
F
fengjiayi 已提交
163
            for in_proto in proto.inputs:
F
Update  
fengjiayi 已提交
164 165 166 167 168 169 170 171 172
                in_argus = inputs[in_proto.name]
                if not isinstance(in_argus, list):
                    in_argus = [in_argus]
                if not in_proto.duplicable and len(in_argus) > 1:
                    raise ValueError(
                        "Input %s expects only one input, but %d are given." %
                        (in_proto.name, len(in_argus)))
                in_argu_names = []
                for argu in in_argus:
F
fengjiayi 已提交
173
                    in_argu_names.append(argu.name)
F
Update  
fengjiayi 已提交
174
                self.desc.set_input(in_proto.name, in_argu_names)
F
Update  
fengjiayi 已提交
175

Y
Yu Yang 已提交
176
        if outputs is not None:
F
fengjiayi 已提交
177
            for out_proto in proto.outputs:
F
Update  
fengjiayi 已提交
178 179 180 181 182 183 184 185 186
                out_argus = outputs[out_proto.name]
                if not isinstance(out_argus, list):
                    out_argus = [out_argus]
                if not out_proto.duplicable and len(out_argus) > 1:
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
                        (out_proto.name, len(out_argus)))
                out_argu_names = []
                for argu in out_argus:
F
fengjiayi 已提交
187
                    out_argu_names.append(argu.name)
F
fengjiayi 已提交
188
                    argu.op = self
F
Update  
fengjiayi 已提交
189 190
                self.desc.set_output(out_proto.name, out_argu_names)

Y
Yu Yang 已提交
191
        if attrs is not None:
F
fengjiayi 已提交
192
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
193 194 195 196 197 198 199
                attr_name = attr.name
                if not attr_name in attrs:
                    continue
                if not isinstance(attrs[attr_name], Block):
                    self.desc.set_attr(attr_name, attrs[attr_name])
                else:
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
Y
Yu Yang 已提交
200

201
        self.desc.check_attrs()
F
fengjiayi 已提交
202 203
        self.desc.infer_shape(self.block.desc)

F
fengjiayi 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
        return self.desc.input(name)

    @property
    def input_names(self):
        return self.desc.input_names()

    def output(self, name):
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

    def has_attr(self, name):
        return self.desc.has_attr(name)

    def attr_type(self, name):
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
        return self.desc.attr(name)

    def block_attr(self, name):
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
237 238


Y
Yu Yang 已提交
239 240
class Block(object):
    def __init__(self, program, idx):
F
fengjiayi 已提交
241
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
242
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
243
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
244 245 246 247
        self.program = program

    @property
    def parent_idx(self):
F
fengjiayi 已提交
248
        return self.desc.parent
Y
Yu Yang 已提交
249 250 251

    @property
    def idx(self):
F
fengjiayi 已提交
252
        return self.desc.id
Y
Yu Yang 已提交
253

Y
Yu Yang 已提交
254 255 256
    def create_var(self, *args, **kwargs):
        return Variable(self, *args, **kwargs)

Y
Yu Yang 已提交
257 258 259 260
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
        return Parameter(global_block, *args, **kwargs)

Y
Yu Yang 已提交
261
    def append_op(self, *args, **kwargs):
F
fengjiayi 已提交
262
        op_desc = self.desc.append_op()
F
Update  
fengjiayi 已提交
263
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
264 265 266 267
        self.ops.append(op)
        return op

    def prepend_op(self, *args, **kwargs):
F
fengjiayi 已提交
268 269
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
270 271 272
        self.ops.appendleft(op)
        return op

Y
Yu Yang 已提交
273 274

class Program(object):
Y
Yu Yang 已提交
275 276 277 278 279 280 281 282
    @classmethod
    def instance(cls):
        # From https://stackoverflow.com/questions/8212053
        # Making Program as a Singleton class.
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

Y
Yu Yang 已提交
283
    def __init__(self):
Y
Yu Yang 已提交
284 285
        assert not hasattr(self.__class__,
                           '_instance'), 'Do not call constructor directly!'
F
fengjiayi 已提交
286
        self.desc = core.ProgramDesc.instance()
Y
Yu Yang 已提交
287 288 289 290 291 292 293 294 295 296 297
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0

    def global_block(self):
        return self.blocks[0]

    def current_block(self):
        return self.blocks[self.current_block_idx]

    def create_block(self):
        new_block_idx = len(self.blocks)
F
fengjiayi 已提交
298
        self.desc.append_block(self.current_block().desc)
Y
Yu Yang 已提交
299 300 301 302 303 304 305 306
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx


Y
Yu Yang 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")

        Variable.__init__(self, block, shape=shape, dtype=dtype, **kwargs)
        self.trainable = kwargs.get('trainable', True)
        self.init_attr = kwargs.get('initialize_attr', {
            'type': 'uniform_random',
            'min': -1.0,
            'max': 1.0
        })

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})
        self._append_initialize_ops_()

    def _append_initialize_ops_(self):
        attr = copy.deepcopy(self.init_attr)
        op_type = attr.pop('type', None)
        block = self.block
        assert isinstance(block, Block)
        shape = self.shape
        attr['dims'] = shape
        attr['data_type'] = int(self.data_type)
        op = block.prepend_op(
            type=op_type, inputs=None, outputs={'Out': [self]}, attrs=attr)
        self.op = op


Y
Yu Yang 已提交
343
# program is a global instance.
Y
Yu Yang 已提交
344
g_program = Program.instance()